
SlINFO COPY

AFRL-IJE-WP-TR-2006-0153

Specification for Visual Requirements of
Work-Centered Software Systems

James R. Knapp

Wright State University
3640 Colonel GlennHiha

Dayton OH 45435-001

October 2006

Interim Report for November2004 to October 2006

Air Force Research Laboratory

Human Directorate

dCognitive Systems Branch

NOTICE

" " " for
an pups te than Goenetpoueetde not in an way obiat h U•.S

speifiatinsor other data does not license the holder or any other person or corporation;
or convey ny rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by the Air Force Research Laboratory, Human

Information Center (DTIC) (http://wwwdticml).

AFRL-11,-WP-TR-20064153 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR

//SIGNED//

DANIEL G. GODDARD
Chief Warfighter Interface Division
Air Force Research Labortory

publication does not constitute the Government's approval or of its ideas or findings.

. . .Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for uts collection of information is estimated to average 1 hour per response, indu:ding the time for reviewing instructions, searching existing date sources, gathering and maintaining

data needed, and ooripletifng mnd reviewing 0"a cllection of informatom Send ammernt regaerding t burden estimate or any other aspect of #sa coilectior of inrometion, A-11 g euggestions for reducig
his burden to Departrit of Defense, Weihgton Heedquarler Services, Directorate for kiorniation Operations and Reports (0704-0188). 1215 Jefferson Dims Higvewy., Suit 1204, Arlingon, VA 22202.

43•2. Respondents should be s 's VW hii lo's taning any olier provision of law, no person shall be subject to any penity for fallng to comply wih a collection of N ilo ration it does not display a currenty

valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1 REPORT DATE (DD-MM-YYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

October 2006 Thesis November 2004 - October 2006
4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER

Specification for Visual Requirements of Work-Centered F33601-03-F-0064
Software Systems 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
63231F

6. AUTHOR(S) 5d. PROJECT NUMBER

James R. Knapp
5e. TASK NUMBER

6f. WORK UNIT NUMBER
28300310

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Wright State University
3640 Colonel Glenn Highway
Dayton OH 45435-0001

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

Air Force Materiel Command AFRL/HECS

Air Force Research Laboratory

Human Effectiveness Directorate 11. SPONSORIMONITOR'S REPORT

Warfighter Interface Division NUMBER(S)

Cognitive Systems Branch
Wright-Patterson AFB OH 45433-7604 AFRL-HE-WP-TR-2006-0153

12. DISTRIBUTION I AVAILABILITY STATEMENT
Approved for public release; distributed is unlimited.

Cleared by AFRL/PA as AFRL/WS-06-2458 on 10 October 2006.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Work-centered software systems function as inherent work-aiding systems. Based on the design concept for a work-

centered support system (WCSS), these software systems support user tasks and goals through both direct and indirect

aiding methods within the interface client. In order to ensure the coherent development and delivery of work-

centered software products, WCSS visual interface requirements must be specified in order to capture the cognitive

and work-aiding aspects of the user interface design. Without the ability to specify such original requirements,

the probability of creating an accurate and effective work-centered software system is significantly reduced. A new

visual requirements specification language based on the User Interface Markup Language (UIML) is proposed as an

effective solution to bridging this gap between cognitive systems engineering and software engineering. In this

paper, a new visual requirements specification language that can capture and describe work-centered visual

requirements within a semi-formal syntax is introduced and explained. The proposed language is also shown to be

easily integrated into a UML object model via the use of UML's extensibility features. Such a specification language

for visual requirements could be employed by cognitive engineers and design teams to help convey requirements in a

comprehensible format that is suitable for a software engineer. Such a solution provides coherency in the software

modeling process of developing work-centered software systems and contributes towards the specification of unique

visual software requirements.

15. SUBJECTTERMS Work-Centered Support Systems, Work-Centered Software Systems, User Interface

Markup Language

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Vincent A. Schmidt

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (kic/sde area

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR 116 code)

Standard Form 298 (Rev. 8-98)
Presrbed by ANSI SUL 239.18

THIS PAGE LEFT INTENTIONALLY BLANK

SPECIFICATION FOR VISUAL REQUIREMENTS

OF WORK-CENTERED SOFTWARE SYSTEMS

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

By

JAMES ROBERT KNAPP B.S.,

Wright State University, 2005

2006

Wright State University

iii

WRIGHT STATE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

October 18, 2006

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY
SUPERVISION BY James Robert Knapp ENTITLED Specification for Visual
Requirements of Work-centered Software Systems BE ACCEPTED IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of
Science.

Soon Chung, Ph.D.
Thesis Director

Forouzan Golshani, Ph.D.
Department Chair

Committee on
Final Examination

Soon Chung, Ph.D.

Thomas Hartrum, Ph.D.

Vincent Schmidt, Ph.D.

Joseph F. Thomas, Jr.
Dean, School of Graduate Studies

iv

ABSTRACT

Knapp, James Robert. M.S., Department of Computer Science and Engineering,
Wright State University, 2006.
Specification for Visual Requirements of Work-Centered Software Systems.

Work-centered software systems function as inherent work-aiding systems.

Based on the design concept for a work-centered support system (WCSS), these

software systems support user tasks and goals through both direct and indirect aiding

methods within the interface client. In order to ensure the coherent development and

delivery of work-centered software products, WCSS visual interface requirements

must be specified in order to capture the cognitive and work-aiding aspects of the user

interface design. Without the ability to specify such original requirements, the

probability of creating an accurate and effective work-centered software system is

significantly reduced. A new visual requirements specification language based on the

User Interface Markup Language (UIML) is proposed as an effective solution to

bridging this gap between cognitive systems engineering and software engineering. In

this paper, a new visual requirements specification language that can capture and

describe work-centered visual requirements within a semi-formal syntax is introduced

and explained. The proposed language is also shown to be easily integrated into a

UML object model via the use of UML's extensibility features. Such a specification

language for visual requirements could be employed by cognitive engineers and

design teams to help convey requirements in a comprehensible format that is suitable

for a software engineer. This solution provides coherency in the software modeling

process of developing work-centered software systems and contributes towards the

specification of unique visual software requirements.

V

TABLE OF CONTENTS

I . IN TRODUCTION ... I

2 .BACKGROUND .. 8

2.1 Work-centered Support Systems ... 8

2.1.1 WCSS Interface Client Technology ... 8

2.1.2 WCSS Design Technology .. 11

2.2 Software Requirem ents ... 16

2.2.1 Requirements Description ... 16

2.2.2 Functional Requirements ... 18

2.2.3 Non-functional Requirements .. 19

2.2.4 User Interface Requirements 20

2.2.5 Unified Modeling Language as a Requirements Modeling Tool 20

2.2.6 User Interface Development ... 21

3. WORK-CENTERED SUPPORT SYSTEMS IN PRACTICE 23

3.1 Work-centered Interface Distributed Environment (WIDE) 23

3.1.1 W IDE Spiral O ne ... 25

3.1.2 Tim eline Tool W CSS ... 26

3.1.3 WIDE Spirals Two and Three .. 33

3.2 Other Related WCSS Examples .. 34

3.2.1 GAMAT WCSS for Global Weather Management (GWM) 34

3.2.2 The Coronet Awareness and Team Synchronization (CATS) Project 35

4. VISUAL REQUIREMENTS SPECIFICATION LANGUAGE 36

vi

4.1 Language Basis .. 36

4.1.1 Overview ... 36

4.1.2 Specifying Work-Centered Visual Requirements 37

4.1.3 Extensible Markup (XML) Languages .. 40

4.1.4 User Interface Markup Language (UIML) 40

4.2 Visual Requirements Language Framework .. 42

4.2.1 Original UIML Syntax ... 43

4.2.2 Structure and Part Tag Modifications ... 45

4.2.3 Style and Property Tag Modification .. 47

4.2.4 Behavior and Content Tag Modification .. 49

4.2.5 Link Keyword .. 52

4.2.6 Formatting Modifications .. 53

4.2.7 Additional Features of UIML .. 55

5. APPLYING THE VISUAL REQUIREMENTS SPECIFICATION LANGUAGE
... 56

5.1 Application on the Timeline Tool WCSS ... 56

6. INTEGRATING THE VISUAL REQUIREMENTS SPECIFICATION
LANGUAGE ... 70

6.1 UML Augmentation .. 70

6.2 Work-Centered Software Process .. 73

7. REVIEW AND RELATED SUBJECTS ... 80

7.1 Review of the Visual Requirements Specification Language 80

7.2 Related Subjects ... 82

vii

7.2.1 Inclusion of Cognitive and Work-Context Data 82

7.2.2 Functional Work-Centered Requirements 84

7.2.3 Integrating the Visual Requirements Specification Language into a

Development Environm ent .. 85

7.2.4 Expanding the Visual Requirements Specification Language 86

APPENDIX A INSTRUCTIONS FOR EMPLOYING THE VISUAL
REQUIREMENTS SPECIFICATION LANGUAGE .. 87

APPENDIX B TIMELINE TOOL WCSS VISUAL SPECIFICATION 90

R EFEREN C E S .. 102

viii

LIST OF FIGURES

Figure 1.1 Work-centered Software Development Gaps .. 5

Figure 2.1 WCSS Interface Client Composition ... 11

Figure 2.2 Work-Centered Design Framework ... 14

Figure 3.1 Design of Multi-Mission View .. 27

Figure 3.2 Design of Detailed Mission View .. 29

Figure 3.3 Design of Core Display ... 29

Figure 3.4 Design of Diplomatic Permissions Cluster .. 31

Figure 3.5 Design of Port (Airfield) Cluster ... 32

Figure 3.6 GAMAT WCSS for Global Weather Management 34

Figure 4.1 Illustration of UIML Usage .. 41

Figure 4.2 UIML Syntax Example ... 45

Figure 4.3 UIML Structure and Part Tags ... 46

Figure 4.4 Visual Requirements Specification Language Structure Layout 47

Figure 4.5 UIML Style and Property Tags .. 48

Figure 4.6 Visual Requirements Specification Language Static Attributes 48

Figure 4.7 UIML Behavior Tag Syntax .. 51

Figure 4.8 Visual Requirement Specification Language Dynamic Attributes 51

Figure 4.9 Visual Requirements Specification Language Full Example 52

Figure 4.10 Visual Requirement Part Template ... 54

Figure 5.1 Timeline Tool Design Concept .. 57

Figure 5.2 Multi-Mission Display Visual Specification 58

Figure 5.3 Detailed Mission Display Visual Specification 61

Figure 5.4 Cluster Display Visual Specification ... 65

Figure 5.5 Multi-Mission Prototype ... 67

ix

Figure 5.6 Detailed Mission View Prototype ... 67

Figure 6.1 UML and Visual Requirements Language Package Integration 70

Figure 6.2 UML and Visual Requirements Language Comment Integration 72

Figure 6.3 WCSS Development Process .. 74

Figure 6.4 Work-Centered Software Process Model .. 77

X

ACKNOWLEDGEMENTS

This research was supported in part by a research fellowship jointly provided

by the Air Force Research Laboratory and the Dayton Area Graduate Studies

Institute. This research was also supported in part by an appointment to the Research

Participation Program at the Air Force Research Laboratory, Human Effectiveness

Directorate, Bioscience and Protection, Wright Patterson AFB administered by the

Oak Ridge Institute for Science and Education through an interagency agreement

between the U.S. Department of Energy and AFRL/HEP.

This document is cleared for Public Release by AFRL/WS Public Affairs,

AFRL-WS 06-2458.

xi

THIS PAGE LEFT INTENTIONALLY BLANK

xii

1. INTRODUCTION

Software engineering is an engineering discipline covering the lifecycle of

software production from start to finish. It encompasses a large number of

components to support this production including the use of: theories, methodologies,

tools, languages, and management techniques. Each of these unique components is

integrated throughout the software lifecycle in an effort to produce a robust software

product. Software engineering adopts a systematic and organized approach as the

most effective way to produce high-quality software [1]. In order to produce the

software product, a set of activities and associated results are completed in what is

known as a software process or software modeling process [1]. There are several

major steps in any particular software process. These steps occur chronologically as

progress is made towards a finished product. Every system requires a different and

unique software process to best suit its individual needs. One of the first major

milestones in a software process is the specification of the software to be developed.

This entails the definition of the software's operation as well as constraints upon that

operation. This crucial first step in the software modeling process leads directly into

development, implementation, and other further steps. A good software process is one

which reliably communicates information from one step to another, laying a

foundation for coherence across the entire process.

The Unified Modeling Language (UML) has shown itself to be an effective

method employed in the software modeling process. Since its initial standardization in

2

early 1997, the UML is the most widely used modeling approach for contemporary

software engineering. The UML provides a versatile starting point for covering the

various facets of the software development process. The premise for the creation of

the UML was fundamentally one of communication [2]. Without a standard by which

engineers could effectively communicate, the growth of the field of software

development was considerably handicapped. The UML accomplished this standard in

many ways including: establishing a common medium for communication across

stakeholders and development team members, acting as a repository that documents

incremental development decisions, and providing a mechanism in which to convey

design specifications for final implementation.

The UML is composed of a graphical notation and corresponding meta-model

[2]. The graphical notation is the general syntax used in the various model diagrams

which the UML uses to display aspects of system behavior. The composition of all

these diagrams gives an overall object model of the software to be developed. The

UML notation is the visual portion of the language, while the meta-model, which

defines the concepts of the language itself, provides the back-end framework. After

capturing the various requirements of a system through elicitation and analysis, they

can be mapped into the UML's library of diagrams. The collection of all the created

diagrams known as the object model serves as a specification which forms a basis for

implementation once fully conceived.

The UML possesses valuable assets in being able to continue to grow and

extend its capabilities to meet new software development needs. In 2003, UML 2.0

became accepted as the new UML standard, including three brand new diagrams to

aid in modeling behavior. Additions such as this recent upgrade give strength to the

UML's versatility and show that it has potential for the long term.

3

The need for powerful, high-quality software in today's world is of crucial

importance. The amount of data presented to users in new software continues to grow

as software is developed to accomplish more complex work tasks. Along with total

data, the level of computational complexity for the user is also rising rapidly.

Software users must perceive, absorb, and make more complicated decisions within

software than ever before. Government agencies such as the Department of Defense

are migrating towards net-centric environments where data repositories can be fused

together to form massive information hubs. Net-centric environments, therefore, are

likely to further exacerbate this information overload problem. Progress is being made

against this issue in proposed solutions such as the Joint Battlespace Infosphere (JBI),

which allows operators to subscribe to data sources using data fusion tools to filter

relevant information. However, this approach and others like it do not ensure that

appropriate views of the filtered data are work supportive or give an initial work

environment representation which can then be customized to the work being done [3].

In order for software to be successful in military, business, and other applications it

must be functionally adept to accomplish its tasks as well as helpful and convenient to

its end-users in completing those tasks.

In the early years of software engineering development, the focus of system

design was primarily to create a product which was functionally operational. The

creation of a piece of software which achieved a specific task was considered a

successful and worthy investment. As time went on, the paradigm shifted as system

developers realized that there must exist certain usability requirements in the

development of the product in order to ensure that it can be understood and used by

the operator. This led to what is referred to as user-oriented design, which is, in effect,

design from beginning to end with the end-user in mind. However, as aforementioned

4

in the case of data fusion, giving the user more options and control does not

necessarily help him to accomplish work. Developing software systems with a focus

on work has been researched and defined by Eggleston et al. as a work-centered

support system. According to their definition, a work-centered support system design

approaches work representation in terms of how workers see and engage work [4].

This work representation effectively captures the work ontology, which is essential

for building software around the work environment. Within this theory, software is

developed under a work-oriented framework, allowing components such as the

software interface client to be developed as a work support aid. The interface client

takes the form of a customized graphical representation of the user's work

environment, allowing the user to comprehend and employ the software most

effectively. As a system is conceptualized, it is made to implicitly support the user in

completing work. In order for software capabilities to be fully maximized towards

performing work in the field of practice, they must be developed from a work-

centered design methodology.

From a work-centered point of view, the UML shows inadequacy in its ability

to model work-oriented behavior. Although a powerful tool, the UML has no specific

modeling of user goals and intentions, showing it to be inept in expressing usage-

oriented functionality [5]. The UML was not designed to be an all encompassing

modeling tool, and displays an overall lack of support in the development of a work-

centered object model. In general, the UML's methods are relatively informal,

emphasizing usefulness rather than precision. The UML serves to highlight the

important details and retain the most desired features in the development of a system.

However, since the UML is the primary software engineering technique used by

current system developers, this deficiency in expressing usage-oriented functionality

5

keeps many systems from being designed in an optimal work-centered manner. This

gap that exists in the UML correlates to a more abstract need for a direct link between

software engineering and cognitive systems engineering in this area. It is important to

note that while the UML is not all sufficient it does retain the possibility for further

extensions and enhancements, and even encourages such augmentation. Many experts

seem to agree that any perceived gaps could be bridged by making alterations and

additions to the already standard and robust UML [5].

In producing work-centered software, 2 major development gaps prevent

projects from attaining successful product completion. These key hindrances are

illustrated in Figure 1. 1.

Work-Centered lnegIon•
Design Design

Figure 1.1 Work-centered Software Development Gaps

The first gap depicts the need for a method of capturing visual work-centered

requirements so that they may be verified and accurately communicated to a

developer after the work-centered design has been conceived. The second gap reveals

the need to combine unique work-centered requirements specification with other

standard specification such as the UML. These deficiencies deter the production of

work-centered software and dramatically decrease project coherency. The result is a

highly ad-hoc and chaotic software process leading to a high percentage of

6

miscommunication. These gaps in visual requirements specification must be met in

order to enable a stable and repeatable work-centered software process.

Current software engineering processes and methods have difficulty

expressing certain types of requirements throughout development. Many of these are

what are known as non-functional or quality requirements. These types of

requirements often involve factors closely associate with user work. The user

interface or visual portion of the software product falls firmly into this category of

being supportive to work tasks. The UML does not currently support this

representational layer of the design. For work-supporting software to become a

reality, the ability to specify work-centered requirements from a software engineering

perspective must be made available. Otherwise, vital graphical interface requirements

will be lost during implementation.

This paper proposes a visual requirements specification language as an

intuitive and effective solution to bringing cognitive systems engineering and

software engineering a step closer together. The language employs a semi-formal

syntax to present visual requirements in a structured and unambiguous format. Using

the visual requirements specification language, designers can formally capture work-

centered visual requirements which are essential to successful work-aiding interface

development. This document also elaborates on how the proposed language easily

integrates into a UML object model via the use of augmentation capabilities. This

document covers all the relevant aspects necessary to understanding and defining the

new specification language. Chapter 2 provides a more in-depth background of the

parties involved in the problem. It discusses work-centered support system concepts

and current software engineering requirements collection techniques in further detail.

Chapter 3 describes existing work-centered software products that have been or are

7

currently being developed by the Air Force Research Laboratory. Chapter 4 covers

the details of the new visual requirements language. This includes its foundations,

framework, syntax and semantics. Chapter 5 gives an example of what a practical use

of the specification would look like using one of the software products described in

chapter 3. Chapter 6 explains how the specification language integrates into a UML

object model. It also covers how doing work-centered specification fits into a standard

software process. Chapter 7 provides a review of the contributions of the proposed

language. It also covers related topics and gives future direction for research. Two

appendices are provided with additional materials regarding the contents of this paper.

Appendix A shows a step-by-step method for employing the visual specification

language to specify a work-centered user interface. Appendix B gives the full

specification of the software product partially covered in chapter 5.

2. BACKGROUND

2.1 Work-centered Support Systems

A work-centered support system (WCSS) is a software system composed of a

group of interacting elements focused on helping the user to accomplish work. As

described by Eggleston et al., "a WCSS appears as a graphical user interface with

embedded support tools in a work-centered organizational structure" [6]. WCSS is

based upon the concept that the primary purpose of a software user interface is to

function as a work aiding system. It combines representational aiding with intelligent

automation within a single organizing framework [7]. WCSS is both a design

technology and an interface client technology for the user interface' layer of software

application [6].

2.1.1 WCSS Interface Client Technology

As an interface client technology, WCSS dictates portions of control structure,

object model, and user interface in a software product [6]. In normal practice, the

form of the user interface is dominated by concerns over information object design,

incorporation of good human factors, and meeting general style guidelines for human-

computer interaction. However, little effort has been devoted to treating the interface

as a support system in its own right [4]. Modem software systems contain many

characteristics which inhibit the accomplishment of work tasks. Users often suffer

from information overload, a condition where the user is inundated with information

8

9

used to complete work tasks. Military systems such as the Joint Battlespace

Infosphere (JBI) support massive data fusion and selection, and therefore are highly

susceptible to information overload. Although such architectures provide the user

with all the knowledge necessary to make work decisions, there is no guarantee that

the user will be aided by the format in which information is presented. On the

contrary, it is more likely that the gross amount of data will burden the worker in his

ability to perform. Another common detriment to software user interface technology

is automation surprise. This issue concerns unexpected and confusing user interface

behavior. The result of such activity diverts attention away from work tasks and leads

to performance errors and costly time delays. The WCSS approach achieves effective

support for these cognitive concerns by blending various aiding tools in a manner that

is tailored to the characteristics of user work [6]. In this form, the speed and quality of

task decision making is improved and the amount of cognitive burden placed on the

user is minimized.

By highlighting and representing the key features of the work domain, the

interface is made sensitive to the work context and able to support the range of work

assigned to the user. This includes methods of both direct and indirect work support.

Direct aiding is provided by a coordinated set of software agents that interact with the

user and are clearly connected to or embedded in the work domain visualizations [8].

Indirect aiding is provided largely through the use of work domain visualizations and

common work terms [8]. The main ingredients which constitute a work-centered

support system are: a set of representational forms that themselves act simultaneously

as work aids and GUI panels (for perceptual-based analysis and situational

awareness), a set of different classes of software agents crafted and made available to

10

automatically perform work tasks under the guidance and control of the user, and a

common work domain ontology to connect the various forms of aiding.

Representational forms present work tasks in domain terms, showing the

problem state, environment constraints, and resources available for their completion

[7]. These types of aids are context relevant, meaning they attempt to capture the

work domain instead of simply being an activity-based model. When the work

domain is used as a base point for providing support, the aid better accommodates the

flexible and adaptive nature of user work [7]. The user is then capable to address

complex work situations without suffering from complicated reasoning.

Representational forms are supplied by the graphical and visual portions of the user

interface. This includes the necessary components for the work domain to be

represented within the software support tool.

Software agents handle the automation and data fusion portions of a WCSS.

These agents provide a form of direct aiding although they may or may not always be

visible to the user. Each agent can automatically perform work tasks with the user's

permission. Agents give unique, individual aiding for functional elements of work

such as data transformation and computation. Overall, the agent store functions to

reduce the cognitive processing demands on the user.

In order to achieve unification of the various local forms of aiding, a common

work ontology is necessary. Ontology, as defined by Eggleston, "is the set of terms,

meanings and relations between terms that captures or represents some subject

matter" [6]. Therefore, a work domain ontology would entail the terms and meanings

a worker uses to think about and accomplish work tasks. In association with this work

ontology, the domain model is also expressed from the worker point of view. This

11

form of model is a work ecology model because of its inherent relative relation to the

worker [7]. The work ecology model acts as the habitat for both representational form

and software agent aiding methods. It is the foundational framework where the

various forms of support blend together into a work-centered support environment.

The work ecology model, in summation with both aiding methods, establishes a

homogeneous and unified work support system which is efficient and effective in

helping the user to accomplish work. A conceptual diagram of the WCSS interface

client technology is provided in Figure 2.1.

j Work Ecology Model

Figure 2.1 WCSS Interface Client Composition

2.1.2 WCSS Design Technology

As a design technology, WCSS requires principles, concepts, and strategies

for reducing work complexity in creating a work-centered client [6]. Prerequisite to

any WCSS being developed in practice, a design methodology must exist that suits

the creation of work-centered software. This emerging design framework, formally

labeled Work-Centered Design (WCD), illustrates and emphasizes important features

12

and concepts of a work-oriented design. Eggleston states that a WCD framework is,

"consistent with, and in many ways, overlaps other methods to design that are known

in broad terms as the cognitive engineering approach to human-centered design" [9].

A key tenet in the success of WCD is the notion of coherence. The sustain-

ability of vital work-centered details must occur from elicitation and knowledge

capture to implementation and final development to certify a successful WCSS.

Without the potential to communicate how requirements and design intent

interconnect, the probability of creating a stable, adaptable, and coherent WCSS is

significantly diminished. Transmission of fundamental design artifacts is

indispensable in order to prevent the destruction of the designed work-centered

orientation at development trade-off points. As a new design framework technology,

WCD continues to mature towards a fully coherent framework.

Work-Centered Design is carried out with very close ties to the work ontology

as mentioned in section 2.1.1. This set of terms, meanings, and relations on the

contextual subject matter are made visible in a WCSS through Work-Centered Design

[6]. In order for this to happen, the designers must have a deep understanding of the

cognitive and collaborative demands of the work domain [8]. There are three

principles which stand out and are used extensively during the process of WCD.

These principles are: the First-Person Perspective Principle, the Focus Periphery

Organization Principle, and the Problem-Vantage-Frame Principle. These principles

represent the building blocks of WCSS development.

The First-Person Perspective Principle is the core element of the work-

centered approach to design a "work representation in terms of how workers see and

engage work" [4]. This means the worker's ontology should be used as the primary

13

vehicle for describing any and all visual interface components. This relieves the user

from needing to "interpret" the software in order to comprehend how it corresponds to

the actual work environment Not only this, but the First-Person Perspective is also

sensitive to the manner in which a worker engages and completes multi-part work

tasks. In this way, not only individual visual screens provide a work-oriented aiding

mechanism, but also the collaboration of the entire visual package does so by

behaving in a logical or sequential format which follows that of the contextual work

tasks. By mirroring the patterns in which the user performs actions and events, the

support system reduces cognitive and procedural burdens on the user.

The Focus-Periphery Organization Principle was developed as a result of

identifying design patterns recurrent to WCSS interface designs. The theme of a

central frame focus has become a canonical element of all WCSS designs to date [4].

Non-focal factors which are essential to decision making, yet are not among the most

crucial features, are relegated to the periphery surrounding the central frame. Through

this combination of center and periphery, the entire referential context can be

preserved in the viewing client, yet an order of importance is still maintained to aid

interpretation and data retrieval.

The Problem-Vantage-Frame Principle addresses the nature of work tasks as

an unfolding series of problem solving events [4]. Each individual problem event

which must be completed as part of work exercises is specifically identified in order

to attune the interface to all relevant factors pertaining to decision making and

operations. By doing so, the interface can be designed to encapsulate the referential

coordinates, level of detail, and level of abstraction appropriate for specific work

domain variables [4]. With this in mind, the goal of the overall interface is to

accommodate the vantage point (or vantage points, as typically there are many in a

14

single WCSS) which a user may adopt to meet the current situation [4]. In effect, this

design strategy moves logically from problem to vantage, and then to the final

instantiated interface frame.

The WCD framework coordinates having a first-person perspective with the

current work domain context to ensure the interface system aids the worker in

completing their responsibilities [9]. An overview of the current WCD framework is

presented in Figure 2.2.

a] W- 3 CM Ak ,1I

Work Work- Work Aiding Work-
Knowledge Centered Design Oriented

Capture Requirements Evaluation
Analysis

Figure 2.2 Work-Centered Design Framework

The initial stage of WCD is known as work knowledge capture. In this stage,

the focus is on capturing knowledge about the work system's organization [9]. All of

the goals during this stage revolve around familiarization, understanding, and

discovery of the worker, work context, and work practices. During this process,

information may be collected out of a broader context than simply that of the system

to be developed. Doing so collects necessary details about the exterior work context in

which the system will be placed. The information acquisition done in this phase builds

a knowledge base of the richness and complexity of the work and work context that

can then be used by the designers to build a work-centered support system [9].

The next stage in the framework for WCD is work-centered requirements

analysis. Here, the captured knowledge is further analyzed to draw out properties of

work in which the customer's requirements are embedded [9]. The goal here is to

15

separate aspects of work into various categories which are more naturally and

logically partitioned [9]. Among these different types of design requirements are:

functional, informational, decision making/problem solving, and situational awareness

requirements [9]. This elicitation of work requirements is technology independent and

states requirements in a succinct understandable manner.

The work aiding design phase of WCD is central in the aim to create a work-

centered product. Proceeding from the requirements taken from the first two steps, an

analysis is made from a cognitive and human factors engineering perspective before a

work-centered design of the system can be first conceived. The various cognitive

requirements which have been collected lead and influence how the design will be

constructed. An area which has been much neglected in the past, the work aiding

design phase preserves the work-centered requirements in the form of the design

before being passed onward for final implementation. Specifically this includes

determining what forms of direct and indirect aiding can be used, as well as how

elements of the workspace context can be represented clearly and effectively. These

types of factors come together in the expression of a design that has the worker's first

person orientation at its center. At the end of this phase of design, screens and

prototypes are commonplace, displaying the appearance of the set of work-centered

requirements. However, as this phase seeks to explore some of the "uncharted

territory" of designing systems which are cognizant and work-aiding, the set of tools

and forms to support the communication of said design are grossly underdeveloped.

This includes the transfer of the final work-centered design synthesis to software

engineers and developers for final implementation. This issue is often intensified by

the fact that software personnel rarely have knowledge of the actual work context

from which the design was developed. Without a medium for communication in this

16

final active step of the WCD process, the entire work-centered design is at risk of

being made ineffectual toward the end product.

Finally, a work-oriented evaluation is done to assess usability, usefulness, and

impact of each design prototype. This can include non-traditional measurement

techniques to ensure that the design meets the cognitive requirements set out from

analysis. As a new design technology, the Work-Centered Design framework

continues to be improved and refined. A complete and definitive evaluation method is

yet to be completed, thus this phase at present is often a conglomeration of various

techniques which can be used to verify design principles.

2.2 Software Requirements

2.2.1 Requirements Description

In order to establish an accurate depiction of software behavior, requirements

are drafted to describe essential constraints. While the word "requirement" is used

quite commonly among software professionals and related circles, its meaning is

usually subjective. What form and structure requirements should take and how they

should be written varies greatly depending on the consulted sources. Sometimes

requirements are viewed as being very high-level, abstract views of the needs of a

system. Other times, requirements are seen as the concrete, unchangeable formal

definitions of system functionality. Without recognizing that both definitions are

acceptable in certain situations, it is unwise to describe a certain style or requirement

definition as universally adopted.

Software requirements are often grouped into categories relating to certain

shared characteristics, features, and details. These divisions are logical separations to

17

call attention to the differences between two specific types of requirements. When

discussing these sorts of requirements classifications, it is important to recognize that

these categories are not always mutually exclusive. For example, a requirement that is

classified as a functional requirement may also turn out to be a domain requirement.

A quality assurance requirement may also be a security requirement. The ability for a

requirement to be analyzed and categorized into more than one logical group opens

the door to a world of confusion. If a development team is not uniform in their

understanding and usage of the various classifications, project development woes will

likely ensue.

Creating a thorough and reliable specification for all of the various unique

requirements of a software system is quite difficult to achieve in the common field of

practice. Specification SRS documents often serve as a contract between contractor

and client as to what is expected of the final resulting system. But, there must be

agreement on what constitutes a satisfactory software requirement. Both parties are

interested in a project's overall success. Therefore, it is common that large amounts of

collaboration take place before an agreement is made on an SRS. Although there is no

standardized format in which the requirements are stated, there are commonly used

criteria that have been duly noted and propagated by IEEE and ISO. Taking a glance

at some of these criteria listed in IEEE 830 and ISO 9126, [10] gives the following

listing:

"* Correct each requirement is an accurate depiction of what the client needs in

the final solution.

"* Complete there are no extra details or features of importance which are left

outside of the requirement

"* Unambiguous there should be only one interpretation of a requirement.

18

Being able to extract a meaning other than the one intended should be

suppressed as much as possible.

"* Consistent there should not be conflicting requirements. The requirements

should fit together to partition the entire system space.

"* Ranked in terms of importance and stability, more important requirements

should be shown to be of higher priority. Unstable requirements should be

fully explained to understand risks associated with them.

"* Modifiable a specification should be as easy to change as possible. Changes

during development can and do occur often.

"* Verifiable each requirement should be able to be verified later in

development to assure that it was indeed satisfied.

"* Traceable a requirement should be able to be followed starting from

elicitation and design through implementation and completion. No

requirement should be left outside each phase of development.

This listing is by no means exhaustive in covering what characteristics help to

ensure that a piece of software will meet all the wanted requirements, but it provides a

stable reference point. Many items in this list can be very subjective in nature, again

causing issues of miscommunication to be possible pitfalls. However, by applying

these principles as much as possible, a software requirements document can progress

towards a more uniform and thorough outcome.

2.2.2 Functional Requirements

Functional software requirements are detailed statements about the services

the system should provide [1]. They are explicit in instructing how the system will

behave to specific input and actions. During requirements engineering, the set of

19

functional requirements is elicited and established. These requirements form the basis

for expectations between client and developer concerning what the final product will

entail. Therefore, it is important that functional requirements be stated as precisely

and accurately as possible. Imprecision or changes to the original functional

requirements given can severely stymie development efforts, contributing to many

software engineering problems [1]. Although these requirements can be fairly abstract

in nature, they should attempt to follow the IEEE 830 criteria as much as possible.

This can alleviate the occurrence of costly mistakes and omissions.

2.2.3 Non-functional Requirements

Non-functional requirements, as their name implies, are requirements which

do not specify functions which the system should perform. Although the title "non-

functional" may make these requirements sound less important, this is far from the

truth. On the other hand, these types of requirements can be just as essential, if not

more so than the functional requirements. Depending on the circumstances and

context for final software deployment, a software effort can turn into a failure due to

the omission of non-functional requirements. Non-functional requirements specify

"how" the system is to perform functionality [10]. These vital constraints on emergent

system properties include areas such as: security, ethics, reliability, maintenance,

response time, availability, and usability. The difficulty that comes with many of

these requirements is the inability to specify them. Engineers often note that non-

functional requirements are critically important, but that they do not have any way to

specify them, and little help to do so is available [10]. As a result there are often

widely varying methods of stating and communicating non-functional requirements

during the software process.

20

2.2.4 User Interface Requirements

One major subject of attention in the non-functional requirement realm is user

interface (UI) development. The UI is the main access point through which the user

interacts with and makes use of the software product. In order for the software to be

utilized in an effective and efficient manner, the user interface must be accessible

enough that the client has no major hindrances in employing it. This milestone

usability requirement has been the focus of many development efforts. How do you

ensure that the user interface will incorporate good human factors design? How does

the UI fit together with the functional backbone of the software? The incorporation of

the user interface with the rest of the software system causes a collision between the

functional and non-functional requirements. Yet, this aggregation is inevitable in the

development of high-quality useful software.

2.2.5 Unified Modeling Language as a Requirements Modeling Tool

The Unified Modeling Language, or UML, is arguably the most successful

and effective standard modeling tool in the past decade of software engineering. The

UML serves to piece together the scattered details of design into a coherent standard

model which can be used to power the software process towards completion. It has

become a reliable and robust tool in communicating intent between client and

contractor, and a development hub for documenting and incrementing changes to

original design plans. The UML is very well suited for functional requirements. Its

multiple diagrams enhance the number of views and interactions that can be

displayed. This allows system behavior to be well modeled and understood prior to

the implementation of the product. However, the UML does not accomplish what is

lacking in the non-functional requirements focus. While being generally flexible, the

21

UML does not have a direct answer to how a UI should be designed, implemented,

and integrated with the remainder of the software content.

2.2.6 User Interface Development

The manner in which a user interface is instantiated normally ranges

dependent upon development context. Sometimes the UI is completely developed in-

house by the same team who design and implement the rest of the project. Other

times, a team of domain specialists and human factors engineers are involved to aid in

the creation of an effective UI. The methods used within this process also tend to

vary. Diagrams, prototypes, use cases, and scenarios all serve to display how the

interface will respond and behave under certain circumstances. These tools may work

well to design and modify the UI itself, but they are not sufficient to integrate the UI

development with the functional development at large.

In recent years, it has been noted that large numbers of software systems are

not very effective due to poor usability. As this trend has advanced, more of a focus

has been placed upon usage during software design and production. Under the

umbrella of usage-centered design, more of an emphasis is placed on the U[

development and how it relates to the rest of the software. The software development

paradigm continues to shift away from user-centered towards usage, implying that the

amount of usability in a system is in direct relation to how effective it will be in the

field of practice. This assertion represents the positive thrust from software

engineering toward cognitive and human factors engineering. In order for today's

complex software systems to be truly capable, they must be made more contextually

relevant. By supporting the client's work and work environment through user

interface interaction, more attention can be given to the tasks at hand, rather than to

22

the details of manipulating the software. This is precisely the goal which the work-

centered support system methodology pursues.

3. WORK-CENTERED SUPPORT SYSTEMS IN PRACTICE

As the WCSS design ideals and terminology have evolved, several test

developments have been done to further initiate discoveries and progress in the

maturation of WCSS theory. Each of these developed WCSSs has been accomplished

through the Air Force Research Laboratory (AFRL) in direct association with those

developing the WCSS model. The resultant products have served dual-purposes in

aiding the progression of WCSS design theory, as well as achieving a real life

software solution to a problem facing the United States Air Force (USAF). Each of

these systems merits the framework and details described in sections 2. 1.1 and 2.1.2.

In this chapter, information on the Work-centered Interface Distributed Environment

(WIDE) project is covered in detail. Two other WCSSs are briefly presented to further

illustrate work-centered concepts.

3.1 Work-centered Interface Distributed Environment (WIDE)

The Work-centered Interface Distributed Environment is an ongoing WCSS

project being developed to provide advanced human-computer interfaces to plan and

monitor Command and Control (C2) missions. The WIDE project is in direct

association with the Air Mobility Command (AMC) operations center for centralized

command and control and the Tanker Airlift Control Center (TACC). The TACC is a

23

24

global air operations center with hundreds of people planning, scheduling, and

tracking about 350 strategic tanker and airlift missions per day [11]. By their very

nature, airlift missions are both dynamic and complex. The task of planning a mission

involves dozens of factors related to distinct individual sources. As missions

themselves are quite variable, the job of planning and re-planning them is

correspondingly dynamic. A trained mission planning team has the job of

coordinating all the various pertinent mission-related data and communicating with

the respective parties involved. These relevant activities include: matching loads and

cargo to available aircraft, diplomatic clearances for landings in and over-flights of

foreign nations, airfield and airspace constraints, air refueling constraints, and others

[II]. Aside from mission planning, much effort and time is also put into mission

execution. It is often not until a few hours before a mission is launched that it can be

evaluated for adequacy and feasibility [I I]. The process of mission execution includes

many extraneous tasks to that of mission planning including: finalizing various

information and flight plans, obtaining appropriate clearances, receiving appropriate

permissions, and coordinating other mission-vital details. Overall, the C2 work tasks

are numerous, situation-specific, and interrelated in complicated ways [11].

In order to effectively carry out their responsibilities, the mission planning

team must multi-task between mission-related activities such as: monitoring, re-

planning, analyzing, computing, predicting, and communicating. This variety of work

tasks can easily become quite burdensome when dealing with real-time requirements,

exceptions, delays, and personnel. Unfortunately for the staff team, the current

computer systems used to support and manage the execution of the TACC are legacy,

data-centric systems [11]. Critical mission data is shown on a variety of separate

display panels and is not always delivered at the right time or in the right format for

25

mission planners to be able to make effective decisions. This means that duty officers

must piece together data from various places and then often do complex computations

intuitively before any true decision can be made and carried out. When conflicts occur

within airlift missions due to changing real time factors, mission planning officers

must first discover the referring issue by constant monitoring. Then after discovering

such an issue, a duty officer must navigate different information panels to locate the

exact nature and context of the alerted problem. Thus the mission planning team is put

under a large amount of unnecessary cognitive and managerial burden because of the

inability of the current systems to provide effective support for their work.

The WIDE project attempts to address these concerns by supporting the

cognitive aspects of work through a unique blend of visualization and automation,

cognitive work-aids, and human-computer upgrades to current C2 systems. By

studying the work context for the C2 systems, a suitable solution which captures the

nature of the work itself was designed. This design will help mission planning officers

in numerous practical ways by improving their situational awareness of the various

pertinent mission factors, as well as improving decision quality by displaying

information in a timely and more accurate format for analysis. The effect of WIDE

being developed and integrated into existing C2 systems will mean better planning

and monitoring of missions, easier recognition and response to problems, and less

difficulty in the management of multiple ongoing missions.

3.1.1 WIDE Spiral One

WIDE is being developed in a series of three progressive spirals, each

encompassing a different portion of the overall distributed environment. The first

spiral is the foundation of the WCSS. Its concepts will deal in particular with the

26

development of cognitive work support visualizations to display the mission timeline

and related views. The major development component of spiral one is the Timeline

Tool mission display. The Timeline Tool will replace the legacy systems which

currently cause the process of mission planning to be so burdening and complex. As a

complete mission planning and monitoring software package, the Timeline Tool will

be the focus of WIDE spiral one.

3.1.2 Timeline Tool WCSS

The Timeline Tool is a mission planning WCSS, built to aid aircraft

scheduling and operations. It aims to reduce the number of errors committed during

mission re-planning, help recognize the impact of mission-related decisions, and

lower the overall response time in dealing with mission alerts. As such, the user

interface for the Timeline Tool software can be expected to be a complex aggregation

of a large amount of data into a suitable, work-aiding form. The Timeline Tool user

interface can be divided into two major views, each with a specific set of important

requirements. These two views are the multi-mission timeline display and the detailed

mission timeline display. Both views are oriented along a horizontal axis correlated to

time, a key feature of the software as the overall name implies. All figures and

examples given in this section are taken from the actual design drawings created for

the Timeline Tool [12].

The multi-mission timeline display provides an overview of all missions

within the current timeframe. This view serves as the home screen for the Timeline

Tool and allows officers to view core details about many missions simultaneously.

Having an outer vantage point increases the duty officer's situational awareness in

being able to monitor many missions from a single viewing screen. Streaming data is

27

taken in via the Timeline Tool's communication links and each mission within the

multiple view is updated continuously. When an alert is raised due to delays or any

number of other factors, the specific mission in question will signal an alert to call the

attention of the officer on duty. The officer may then refer to the detailed mission

view of the alerted mission in order to ascertain the problem. From this outer

panorama, monitoring and responding to circumstances within individual missions is

made an easy task inside the multi-mission view.

The multi-mission view screen itself can be broken down into a series of

component interface areas. Figure 3.1 shows a design image of the multi-mission

display.

Mission Set Selection Selection So""ing Zoom Level

mission ID

=D =" =0

NOT TO SCALE

Figure 3.1 Design of Multi-Mission View, used by permission 1121

At the top of the multi-mission view are utilities which allow the user to easily

sort or select criteria for viewing a certain set of missions. As a large number of

missions execute concurrently, these features make it easier to monitor specific

mission types. On the left side of the design screen are a series of buttons which,

28

when selected, activate the detailed mission view for the corresponding mission.

Switching between the multi-mission view and the detailed mission view is therefore

a simple navigation. Within the center of the multi-mission view is a collection of

what are referred to as mission cores. The mission core constitutes the key features

and information about a mission which distinguish it from all others. The mission core

will be covered in detail within the explanation of the detailed mission view, but for

now it is worth noting that it is composed of a main viewing display surrounded by

two peripheral sidebars. The Timeline Tool adjusts its display window by default to

the current time of day. The worker is provided with a set of scroll bars (both vertical

and horizontal) to allow traversal of mission core data and time display interval.

Using the vertical scroll bar, the entire set of missions can be accessed. Using the

horizontal scroll bar, information regarding completed past missions and upcoming

mission activity can be viewed.

While the multi-mission view is excellent for observing details of many

missions at once, the detailed mission view is more informative for making mission-

related decisions. The detailed mission display is therefore a primary component of

the Timeline Tool. This viewpoint is where the majority of data useful for monitoring

and re-planning missions resides. Unlike the multi-mission display, the detailed

mission view gives only details relevant to a single mission, making it specific enough

to show all pertaining factors which might affect mission planning activities. An

image of the detailed mission display is given in Figure 3.2.

29

'Core' + 'Clusters's= Complete Mission Timeline Display

CORE

CLUSTER A

CLUSTER B

NOT TO SCALE

Figure 3.2 Design of Detailed Mission View, used by permission 1121

At the top of the detailed design screen is what is referred to as the core

display panel. The core display is the heart of the entire Timeline Tool. Contained

within the core are the distinguishing values (mission id, commencement and

completion times, and aircraft numbers) which identify' each unique mission. The

more appropriate technical name for the core display is the flight data depiction. This

is where the primary flight information is held. An annotated design image of the core

display is provided in Figure 3.3.

FLIGHT DATA DEPICTION
Sta time (*"? for current - fijpo Index allows tompelalon - End tim. lOUT) for current

-Arrival I dest~ation ICAO
~~ ~~~ ~cuss usrWu.ae for current I firstle
Mme-n-Wproectin ces serORt leg actively selected.

on prospects for continued nlight
absent changes.

Text labels designated whkh
-AR avallability Indicator elemenms leg Is portrayed

Cue user on scheduled AR
reservation period .Dotted lines Indicate on-ground
Cue user on AR Wvndow of times for muR14*le missions.
opportunlly. Sn ie;Idct rV

NOT TO SCALE portions of mission.
1T~i.n-alr'project1on pertaIns to current I InW*gh leg ONLY.
Projection will be updlated If and when AR Is accmnplslied.

Figure 3-3 Design of Core Display, used by permission 112]

30

Although the annotations are somewhat self-explanatory, it is worth noting

several important aspects of the core design. First, there are peripheral areas

surrounding the central visual window which are the location for valuable numeric

data related to the mission, flights, identifications, etc. Second, the central visual

window is where the essential timeline data pertaining to flights, air refueling, and all

other flight related actualities are depicted. The horizontal formatting of this

information is crucial to the overall work-centered orientation as it allows a user to

plot all aspects of the mission along the horizontal time axis.

Directly underneath the flight data depiction are a series of mission-related

data areas, organized into separate visual clusters. These clusters all share the same

horizontal orientation of the core display. This makes the entire perspective of the

detailed mission view a consistent work-centered one, catering to the mission

planner's need to see all concurrent activities in a way which aids sense-making and

decision-making priorities. Each cluster contains a distinct category of flight

information. The scalable layout of the detailed mission view allows the addition of

an arbitrary amount of clusters. This extensibility attribute may be exploited in future

upgrades to the Timeline Tool. As of this writing, the following clusters have been

created: geographical features, port (airfield), aircrew, aircraft, ground events,

load/cargo, and diplomatic permissions. As these clusters are very close in visual

structure but differ in actual information, it is superfluous to go into the details of each

one individually. For the purposes of this paper, the port (airfield) cluster and the

diplomatic permissions cluster will be used as representatives of the entire cluster

space. Design images of each of these clusters are provided in Figures 3.4 and 3.5.

31

National oveiflght periods coded In accordance with
'stopghr coding metaphor
This pennies us to flag status I problems with respect
to access to airspace twhelttr or not We DIP.relstedl.

Non-national areas an Incl.ude with separate coding for

'Now' sake of completesness.

NATIOS

c : NOT TO SCALE

* DIP Indicators am labeled to indlcate associated nadon. As Illustrated:
* DIP status coded In accordance with Istopllghtr coding

metaphof. DIP = Diplomatic Permission
- This pennits us to flag status I problesn with respect
to DIP's themselves. Periods of national overfliohr lie within

periods ol DIP clearance.

There are no periods of overflight without

DIP 'cover.ag'.

Figure 3.4 Design of Diplomatic Permissions Cluster, used by permission 1121

The diplomatic permissions cluster (or DIP cluster) shows information

regarding nations which are being traversed during a mission. An aircraft must obtain

a corresponding diplomatic permission in order to cross foreign airspace. This cluster

displays which national boundaries will be crossed and how long diplomatic

clearances have been obtained, all with respect to time. Gaps in coverage are made

much easier to spot visually using this orientation rather than relying on numerical

time segments and off-hand mathematical calculations. As with the core display and

all other clusters, peripheral data is located in boxes which flank the central visual

display.

32

- Mouse-over on end poiit
designators yields exact
speclcations. SHADING denotes

projected period

N ow' jg given port.

um OWT

ouwr U • fu

I NOT TO SCALE

NOTES:
"• Unlike other clusters, Port elemrents are portrayed wily for period

during which the mission Is projected to be at the given airfield

"• Because of this. the Port elemnens are the only ones which wre
'horizontally constrained" Jwith respect to repesentation)l.

"• This tactic is necessary to constrain visualization to reflect only the
pertinent factors.

Figure 3.5 Design of Port (Airfield) Cluster, used by permission [121

Generally, the port cluster follows the same style guidelines as that of the core

display and other clusters. Distinct, however, to this cluster is that elements regarding

specific airfields available during a mission are only to be displayed when the aircraft

is in range of the airfield. This minimizes the overall amount of data on the screen for

this cluster, thus reducing burden to the officer, who only must analyze the port data

when it is relevant to a specific mission. This constraint is interesting as it shows that

while each cluster is quite similar to the others, they all do maintain not only

individual data, but also individual display requirements.

The Timeline Tool also contains various aspects of automation, which directly

assist the user in performing calculations and simulations during usage. These

automating agents range in complexity from simple time difference computations to

on-the-fly repositioning calculations. Many of these facilities are associated with the

simulation mode feature of the Timeline Tool. Having a simulation option within the

too] enables a user to directly interact with the data and planning components of a

mission rather than attempting to perform difficult mental projections. From a visual

33

perspective, nothing changes when the simulation mode is activated (aside from an

indicator that the user is in simulation mode). The user is then able to click, drag, and

reposition core and cluster elements to view the effects they will have on the overall

mission. In this way, a worker is able to re-plan missions in a simulation context

before contacting air personnel and giving guidance. While in simulation, the user can

immediately view conflicts and associated risks related to whatever re-planning is

being simulated. Automation agents handle the functional details associated with

these operations and alert the user accordingly. Using automation facilities to do

complex predictions and potential forecasts is an immense cognitive burden relief.

The result is fewer mistakes made due to inadequate planning tools. The majority of

this portion of the WCSS is seen only through the informative alerts given by the

system, as each agent runs within the functional context of the supporting software.

3.1.3 WIDE Spirals Two and Three

Spirals two and three of the WIDE project will serve to enhance the WCSS

capabilities and scope developed during spiral one. Spiral two will focus primarily on

mission management views and the networking of separate support tools together for

versatility. This may include the fusion of tools such as the GAMAT system described

in section 3.2. 1. It also includes the initial integration of spirals one and two into the

TACC environment. Spiral three includes development of mission team displays and

TACC personnel tools. Together the three spirals will cover the many daily planning

tasks that mission officers at the TACC must engage, producing a software system

designed to accompany those officers in their assignment completion.

34

3.2 Other Related WCSS Examples

3.2.1 GAMAT WCSS for Global Weather Management (GWM)

" " 1

44 4-

Am CIO&

SAI ;ýZ

Figure 3.6 GAMAT WCSS for Global Weather Management

The WCSS for Global Weather Management known as GAMAT is another

software system developed and implemented by the Department of Defense and the

AFRL. GAMAT's visual interface has several noteworthy characteristics which differ

from those of the Timeline Tool in section 3.1.2. GAMAT is highly focused upon a

central visual weather imagery screen, rather than a timeline. This screen depicts

multiple layers of interrelated geo-spatial data. As a work-aiding support, GAMAT

allows the user to have strict control over what layers of weather data are shown on a

particular map image. Using a combination of colors, textures, and graphics, the

central imagery screen keeps the user contextually informed regarding current

weather patterns. Sortie data is imported into the WCSS in the form of a sortie palette,

35

in order to compare and relate it to weather data. The sortie palette acts as a

companion to the central imagery screen. GAMAT also contains extensive navigation

tools and automation agents to create user created "watch areas." As a whole, the

design and support structure of GAMAT differs from that of the Timeline Tool due to

its central focus on weather images and companion sortie palette. In order to

effectively manage media such as weather imagery screens, the interface client must

be adapted quite differently than it would for standard numerical data streams such as

those the Timeline Tool uses.

3.2.2 The Coronet Awareness and Team Synchronization (CATS) Project

The CATS project is being developed as a work product of the Work Support

Research and Development (WSRD) program. This program exists to develop and

deploy WCSSs into various United States Air Force (USAF) systems. The CATS

project will be a net-centric application designed directly to match Coronet needs.

Coronet missions are missions involving the movement of aircraft, cargo, and

passengers from one place to another on long, trans-oceanic trips. Each Coronet

mission leg consists of receivers, which are smaller aircraft with small fuel tanks, and

tankers, which are larger air-refueling aircraft. The CATS application will possess

both single and multiple leg panels. As a WCSS, the CATS project will be a

challenge, as each mission leg has different user viewpoints for accomplishing

different tasks. This means that a solution WCSS will need to match the vantage and

focus of the user for each mission segment in order to establish an overall work-

orientation.

4. VISUAL REQUIREMENTS SPECIFICATION LANGUAGE

4.1 Language Basis

4.1.1 Overview

Creating a specification language that is able to encapsulate the important

aspects of the visual design portion of a WCSS will allow coherent work-centered

software systems to be created. Such a specification creates a framework for the

transmission of visual aspects of design in a precise and unambiguous fashion.

Additionally, such a language enables flexibility and concision in the selection and

labeling of explicit design elements. Most importantly however, a specification

language for visual requirements would have a wide variety of contributing

application such as: being used by cognitive engineers and user interface designers as

a work-centered design tool, providing a format for capturing visual non-functional

requirements, and supporting an area of modeling not provided by the UML. Such a

language would empower those who are most familiar with the work-centered design,

to convey the important design artifacts to software engineers. To a certain degree, a

visual requirements language would have the same purpose and goal as that of the

UML: to provide a medium of communication to talk about software system

modeling, although the focus becomes somewhat more specific. In this chapter, a

visual requirements specification language is proposed and described as a solution to

the plaguing problems of coherently producing WCSS software.

36

37

In order for a specification language for visual requirements to be truly

beneficial, it must integrate well with existing software engineering modeling

techniques. Using a language as a standalone requirements specification amid other

gross functional requirements and modeling documents will only increase its chances

of being overlooked during development. An effective modeling document is one in

which the system design can be best represented in its entirety, as not to additionally

burden the development team when they proceed to build the software. This motif of

having everything in one place thus implies that a specification language for visual

requirements should integrate well into a standard modeling language such as the

UML. The UML makes this quite feasible through its natural extensibility. Using the

UML's existing outlets for connecting outside modeling techniques will provide the

needed linkage for a visual requirements specification. This advantage opens further

possibilities for the specification language towards integration into a complete work-

centered software process. Further discussion and details regarding UML and process

integration are saved for Chapter 6.

4.1.2 Specifying Work-Centered Visual Requirements

As stated in section 2.2.3, it is often the non-functional requirements which are

the most difficult to quantify during software development. Due to their often

qualitative nature, measuring whether a non-functional requirement is being addressed

and met in the product to be developed is a challenging problem. This is an issue that

the software community commonly faces and must deal with appropriately in the

creation of any software with such requirements. The best solution in many cases is to

use requirement-specific methods of both validation and verification. These metrics

ensure that particularly important requirements are as correct as possible. Without any

way to follow non-functional requirements from inception to completed product, there

38

is high potential for unsatisfactory results. Such results can spell disaster for an entire

project and are to be avoided at all costs.

In a WCSS environment, the work. support is directly and intrinsically tied to

the user interface visual display. It is in this contour that both the representational

forms and automation agents combine to form a user support system. Consequently,

the on screen visual display is crucial to the overall success of the resulting WCSS.

Visual requirements, such as how a user interface looks and behaves, are typically

qualitative in nature, making them difficult to declare and convey. In past WCSS

development, a series of images has been given to the development team along with

excessive prose instructions of select visual details. This format is hardly suitable to

achieve coherency in the overall development process. Selected notes, explanations,

and details scattered indiscriminately across many documents and diagrams make

accurate development an arduous challenge. The visual requirements specification

language aims to fill a role which will lessen this burden considerably if not

completely. By creating a framework in which important visual requirements and UI

details can be captured in a semi-formal manner, the language can serve as a

precedent for the communication of work-centered concepts across the development

lifecycle.

Developing a language to capture a set of user interface requirements is a

necessarily difficult task. User interfaces in and of themselves are complex, dynamic,

varied, and often contain many subtleties. A specification language faces the

difficulties of needing to achieve a wide variety of functions in order to be successful.

Summarized below is a list of various component attributes that must be present in a

good specification language.

39

"* flexible A language must be able to scale well to the overall volume of

requirements, whether large or small. It must also be able to capture minute

details if necessary. By covering a wide variety of aspects and features which

are characteristic of Uls, a good language should be able to cater to any UI,

not just certain types.

"* precise A language should remain as unambiguous as possible, as to avoid

errors in interpretation during development. Certain requirements should not

be less ably specified than others.

"* clear A language should be as comprehensible to both UI design experts and

software engineers as possible. Since it is being employed to transfer valuable

design information, it must communicate data reliably. This applies to both

structure and format.

"* integrable Being able to integrate well with existing software engineering

methods is an important aspect for a language to maintain its usefulness. If a

language becomes another stand-alone method, it greatly reduces its chances

of being meaningfully employed in a real world setting.

"* augmentative A language should contain a facet for emerging new trends in

UI development. This allows the language to be used for new and future

design techniques.

This list of attributes is not exhaustive, but provides the groundwork which a

language must cover. In looking for existing modeling languages which might support

these many features, the web development field provides many plausible choices. Of

particular interest in this case is the increasingly growing market of Extensible

Markup (XML) Languages. Amid the many possibilities for developing a new

40

specification language, XML-compliant languages possess an exceptional amount of

potential.

4.1.3 Extensible Markup (XML) Languages

The Extensible Markup Language (XML) was designed and released during

the late 1990's, but has found a growing amount of usage in more recent years due to

high content demands on the World Wide Web [13]. The XML is similar to HTML

(Hypertext Markup Language), with the main difference being that the XML can be

completely configured to better annotate and represent specific application features

and content [13]. This separation from being a strictly structural language allows a

myriad of XML languages to be created using the XML basis, yet pertaining to

specific application domains. Among the design goals for the XML are the support of

a wide variety of applications, ease of use, and comprehensibility [13]. However, each

new language which is rooted in the XML still retains its foundational structure of

tags and nesting. The XML also contains simplistic, yet effective cross-referencing

mechanisms for linking various elements. As many more XML compliant

vocabularies and meta data languages are being created, developers are finding it

easier to create markup for distinct application domains and take advantage of the

XML's parse-able formatting [13].

4.1.4 User Interface Markup Language (UIML)

The User Interface Markup Language (UIML) is an XML compliant meta-

language for describing user interfaces. Its documentation reads, "the design objective

for the UIML is to provide a canonical representation of any UI suitable for mapping

to existing languages," [14]. This canonical representation is quite useful, as Uls are

created using a large variety of different host languages. The UIML also complements

41

the object-oriented view, placing it in-line with current UI design practices. Typically,

the UIML is used to describe generic window-based user interfaces and is then passed

into an interpreter which implements the design into a higher-level programming

language such as Java or C++. Unfortunately, these simplistic designs are not

frequently applicable to unique and complex Uls such as those of a WCSS. However,

the canonical representation still possesses many advantages in specifying a more

intricate user interface. By highlighting the versatile features of the UIML, a new

specification language can be drafted to capture more complex interface designs with

the goal of transferring them coherently to a human development team instead of to a

machine interpreter. These enhanced visual markup designs serve as a visual software

model which can then be incorporated with other design documents to provide a

uniform design model. An example illustration of the UIML's employment is given

in Figure 4.1.

Standard Usage Specificatlon Usage

Figure 4.1 Illustration of UIML Usage

A visual requirements design model using UIML as a basis would connect the

overall software process in the areas of UI modeling and visual requirements. The set

of modifications which transform the UIML into a visual requirements specification

language are described in this section. Beforehand, it is worthwhile to mention several

useful features and attributes of the UIML as a whole before delving into its

component modules.

The UIML shows usefulness for specification in its decentralized and scalable

structure. As with all XML-compliant languages, the UIML follows a basic tag

nesting structure. When employed, the UIML divides a UI design into a set of unique

42

logical parts or objects using its tag nesting structure. This enables a designer to break

down a custom UI and specify each part at an appropriate level of detail. Each piece is

able to contain a set of nested child parts, which can then be labeled and specified

within the context of their parent. The specification proceeds recursively in this

outline format until all the required details at the lowest level are captured. In

association with each part's specification, the UIML uses a toolkit vocabulary to keep

track of the various part types. This vocabulary is established by the designer to

effectively label each class of part for correct identification. In its original context, the

UIML toolkit vocabulary would provide a mapping of logical interface parts to

specific class constructs in a higher-level language. For example, if a UIML design

was to be implemented using Java, each UIML part would correspond to a Java object

class. In the modifications proposed, this language mapping is circumvented towards

a better usage for specification purposes. Incidentally, the toolkit vocabulary remains

a valuable tool as a means to correctly interpret a UIML design. Using the ability to

scale and effectively decentralize design requirements as well as annotate how they

are to be interpreted, a designer can define unique user interfaces with precision and

clarity at the individual part level in order to maintain a work-centered domain focus.

4.2 Visual Requirements Language Framework

In its current form, the UIML is a suitable basis for a specification language,

but still lacks several important characteristics to make it effectual for WCSS visual

requirements. First, the UIML's features for part description and definition must be

made comprehensive enough to merit a clear specification of complex design

artifacts. Currently, details of specific part behavior are addressed at the group level

rather than as individual parts. This deficiency is addressed by the addition of attribute

43

tags which replace and extend the current part tag categories. Along with this, the

ability to specify dynamic attributes (such as rules, conditions, and other behavior)

must be further extended to handle more complex actions (such as streaming data,

periodic updates, and computations). Second, since the language will be employed as

a human-to-human software design protocol rather than a human-to-machine

interpretation, a more understandable formatting is beneficial. In order for human

factors scientists and other user interface specialists to effectively use the proposed

language, it must be represented in a more suitable syntax. These issues and other

minor additions are achieved by modifying the UIML to create a new visual

requirements specification language. By modifying the existing UIML, we can make

use of its features for formal syntax, canonical form, decentralized and scalable

structure, and part vocabulary toward the goal of conveying a UI design to a

development team coherently.

4.2.1 Original UIML Syntax

The original UIML syntax is composed of four major categories used to

describe each part of the user interface. The four category tags are: structure, style,

content, and behavior. Each part is defined in terms of these four major elements.

However, in the original syntax, each of these elements is applied to parts in a

sequential form. For example, first, all parts are defined in terms of their structure.

Next, all parts are described in terms of their style, and so on. Therefore, it is the

summation of all four categories which makes up the part description in its entirety.

This is no problem for a rendering machine or interpreter, but is quite difficult to

comprehend mentally by simply reading the XML design code. The visual

requirements specification language makes use of each of these four categories in

capturing requirements. However, all of the tags have been either modified or

44

incorporated into new tags given to replace those of the original UIML where further

specification is necessary. One immediate example of this is that the segregated group

formatting of part definition is replaced by that of unified definition at the specific

part level. This change makes it much easier to locate all information and

requirements related to a specific part by placing them all in a single location. This

addition and others equip the new language to better encapsulate each part's

requirements and simplify the process of information transfer from designer to

developer. In an effort to help understand the original UIML syntax and the changes

proposed to it in sections 4.2.2 through 4.2.7, Figure 4.2 gives an example portion of a

standard UIML document. This example will be divided and discussed throughout the

next sections.

45

<uiml>

<structure>
<part class="Framel" id="JFrame">
<part class="Labell" id="TermLabel"/>
<part class="Listl" id="TermList"/>
<part class="Label2" id="DefnLabel"/>
<part class="TextAreal" id="DefnArea"/>
</part>

</structure>
<style>
<property part-
name="Framel" name="title">Frame 1</property>

<property part-
name="Framel" name="background">blue</property>

</style>
<behavior>
<rule>
<condition>
<event class="ValueEntered" part-name="TextAreal">

</condition>
<action>
<!.--l-->

<property part-
name="Framel" name="title">Frame 2</property>

<!--2-->

<property part-
name="Framel" name="background">red</property>

</action>
</rule>
</behavior>

</uiml>

Figure 4.2 UIML Syntax Example

4.2.2 Structure and Part Tag Modifications

The semantics of the structure tag within the new visual requirements

language coincide with those of the standard UIML. The main purposes of the

structure tag are of identification and part positioning. The structure tag dictates the

varying degree of part nesting present in the user interface. As such, the structure tag

is important for its influence on all other tag categories. Depending on if a part is

nested or not determines whether it inherits certain styles and behaviors from its

parent part(s). The structure tag, therefore, upholds the tree layout of the entire visual

requirements document, and determines how attributes are to be recursively applied.

46

In the standard UIML, the structure tag specifies the overall part layout for the

entire interface. It contains a set of nested part tags specifying each individual Ul

piece. Each of these part tags contains a unique id name and a class name. The unique

id is used as a reference for other various tags within the document. The class name

serves as a link to the toolkit vocabulary which provides information for an interpreter

or compiler.

For a specification language, these components are all useful. Therefore, in the

new language, each part is given a unique identifying name which can then be used as

a reference point. A class name is also associated with each part to properly define the

part type. In view of a specification, this class definition is the primary vehicle for the

developer to understand why this part of the UI exists and, in this specific case, is

important in the context of a WCSS. Each class is then properly defined in the

external toolkit vocabulary, providing design rationale and universal class details.

Subsequent parts are similarly defined in a recursive outline format, making use of

nesting to correctly identify subsumed parts. In an effort to simplify the organization

of parts within the specification, the unique id is used as the initial label for each part

definition. This change is mainly for formatting reasons, as it makes it much easier to

locate and distinguish different parts (as opposed to seeing all parts begin with the

word, "part"). A contrast between the visual requirements language structure and the

UIML structure tag is given in Figures 4.3 and 4.4.

<structure>
<part class="Framel" id="JFrame">
<part class="Labell" id="TermLabel"/>
<part class="Listl" id="TermList"/>
<part class="Label2" id="DefnLabel"/>
<part class="TextAreal" id="DefnArea"/>
</part>

</structure>

Figure 4.3 UIML Structure and Part Tags

47

A)
Name:JFrame
Subsumed Parts:

AB) Name:JLabel
AC) Name:JList
AD) Name:JLabel
AE) Name:TextArea

Figure 4.4 Visual Requirements Specification Language Structure Layout

The id attribute values given to each part in the original UIML syntax are

replaced by the outline headers (A, AB, etc.) for each part in Figure 4.4. Note that this

simplifies the difficulty in finding unique part names for large numbers of parts, as

well as allowing multiple occurrences of a similar part to be defined without

confusion (side by side buttons for example). The indentation makes it easier to

discover that four parts are nested within the first, as opposed to the four one-line

open and close tags in the original syntax. The class name for each part is retained

within the "Name" attribute. Further formatting modifications and omissions are left

to be discussed more completely in section 4.2.6.

4.2.3 Style and Property Tag Modification

The style and property tags are used by the UIML to capture the presentation

details of each UI part. WCSS visual requirements often contain broad and elaborate

attributes and relationships, making styles and properties highly relevant for visual

specification. Attributes such as location, size, and strict formatting rules contingent

upon external factors, all must be specified clearly and completely. The style and

property categories are quite suitable for the task of capturing this range of static

content.

The UIML describes its style and property guidelines within the boundaries of

the style tag. The style tag denotes anything declared within as some sort of static

content. Each article of content is identified by an individual property tag, containing

48

specific details for that article. Each property tag describes one element of unchanging

style or content for one part. The referring part is identified through its unique id

given in its defining part tag. In this manner, the UIML links together parts with

respective properties. As many elements of style and content as are necessary can be

defined using property tags within the confines of the style tag.

The idea of capturing static content is of central importance in a visual

requirements language. However, instead of relying on references to provide the

connection between parts and attributes, the new language simplifies the process by

defining all style and property attributes alongside the part itself. By integrating style

and properties into a broader static attribute category, intricate static details can be

captured without excessive labeling. No boundary is placed on the number of

allowable attributes, enabling a specification to fully capture all the required static

attributes. In addition to this reorganization and renaming, each static attribute is

given a unique identifier as well. This id serves a similar role to that of the part id in

allowing references to be made for a specific attribute. An illustration of the

differences between the UIML's style and property areas and those of the new

specification language are given in Figures 4.5 and 4.6.

<style>
<property part-name="Frame l" name="title"> Frame 1</property>
<property part-name="Framel" name="background">blue</property>

</style>

Figure 4.5 UIML Style and Property Tags

A)
Name:JFrame
Attributes:

1) title = Frame 1
2) background = blue

Figure 4.6 Visual Requirements Specification Language Static Attributes

49

4.2.4 Behavior and Content Tag Modification

The behavior tag for each part defines how it should react to specific

conditions and circumstances during the life of the user interface. Information about

behavior and how an interface responds is naturally an important element of a visual

requirements specification. Since it is common that many WCSS interface parts have

multiple aspects of behavior, an accurate method of capturing those aspects must be

present in the new language.

The UIML's usage of the behavior tag varies somewhat from that of the

structure and style tags. It is defined in the same nested tag format, but contains a

deeper level of subsumed tags. Within the initial behavior tag, a set of rule tags are

introduced. Each of these rule tags corresponds to one instance of dynamic behavior.

Within each rule tag, there is a pair of corresponding condition and action tags. The

condition tag contains a set of various conditions (defined as events) that correspond

to a set of criteria triggering the behavior. The action tag contains a set of resulting

actions (listed as property tags) to be taken whenever the condition evaluates to true.

The result is that a large amount of behavior produces quite a lengthy amount of

behavior tag code. The parts which are affected by each aspect of behavior are

determined by the references within the property tags at the action tag level. This

makes it very easy for behavior to effect multiple parts, but more strenuous to define

multiple behaviors for a single part.

In conjunction with the behavior tag, the UIML's content tag gives a way to

express certain load time dynamic behavior. The name "content" can be a bit

misleading here, as in this case it refers to the dynamic loading of static attributes, and

not simply the static attributes themselves as with the style and property tags. The

content tag is useful for attributes such as display language, which would be

50

determined upon load time as opposed to real time. For example, when an interface is

first launched, a content tag would tell the system whether to display the interface in

English or in French. The relationship between the behavior tag and the content tag

can be viewed as somewhat of a partnership, with the content tag taking care of load

time dynamic behavior, while the behavior tag handles the rest. At present it is

unclear as to how the functionality of the content tag is of worth in a visual

specification language. The content tag provides the UIML with yet another facet of

flexibility from platform to platform and language to language. However, this is one

area where the standard behavior tag may be sufficient for specifying an interface for

development, while load time attributes (such as those of the content tag) would be

added later if the software were ported to another platform/language.

In any case, it benefits a visual requirements specification language to declare

all dynamic attributes in one location to avoid confusion. With this in mind, a

dynamic attributes category has been created to replace the existing behavior and

content tags. Under this new heading, multiple specific dynamic events can be

identified as sets of event/action pairs. Each event listed under a dynamic attribute

constitutes a triggering condition for the corresponding action. When such an event is

triggered (e.g. a button is clicked), the expression listed under the action clause will

be executed (e.g. load a new page). Each event/action pair is therefore able to capture

one dynamic attribute of behavior. As was the case with static attributes in section

4.2.3, it is effective to place the description of dynamic attributes at the part level

rather than separately. This eliminates unduly references and also scopes the behavior

to the same level as that of its part.

In order to cater to behaviors more complex than can be expressed by simple

Boolean expressions, a keyword call is introduced into the new language. The call

51

keyword exists to create an external functional reference for modeling complex

behavior. This is especially relevant for WCSSs, due to the regular occurrence of

multiple systems sharing and fusing data. By introducing an external reference point,

a designer can call attention to the fact that the source of data for a particular action or

event is retrieved from a specific source. In this way, dynamic actions based upon

events such as mouse location, time of day, or numeric computations can be observed.

Samples of both the UIML behavior tag and the visual specification language's

dynamic attributes are given in Figures 4.7 and 4.8.

<behavior>
<rule>
<condition>
<event class="ValueEntered" part-name"=TextArea1">

</condition>
<action>

<!--l-->

<property part-name= "Frame 1" name="title">Frame 2</property>
<!__2__>

<property part-name="Framel" name="background">red</property>
</action>

</rule>
</behavior>

Figure 4.7 UIML Behavior Tag Syntax

A)
Name:JFrame
Attributes:

a) Event: Value input into part AD
Action: background = red

title = Frame 2

Figure 4.8 Visual Requirement Specification Language Dynamic Attributes

In Figures 4.6 and 4.7, a single dynamic attribute is declared. This attribute

states that when a user inputs a value into the part identified as TextAreal (part AD),

that Frame] (part A) change its title to "Frame 2" and set its background to red. Note

that using the new language requires less than half the space as that of the UIML.

52

Figure 4.9 shows the entire visual requirements specification for the examples in this

section.

A)
Name:JFrame
Attributes:

1) title = Frame 1
2) background = blue
a) Event: Value input into part AD

Action: background = red
title = Frame 2

Subsumed Parts:
AB) Name:JLabel
AC) Name:JList
AD) Name:JLabel
AE) Name:TextArea

Figure 4.9 Visual Requirements Specification Language Full Example

4.2.5 Link Keyword

In addition to the standard modules of structure and static and dynamic

attributes introduced, a linking module has been added to the visual requirements

language to allow a mechanism for communicating additional part information. While

the existing utilities of the specification language are complete in and of themselves.

There can still exist difficulty in communicating complicated design details. While the

specification language may be able to express the desired capabilities and attributes

semi-formally, it can still be a challenge to mentally comprehend the outcome of the

design. Hence, the link keyword exists to shine light into otherwise gray areas of

comprehension. The link keyword provides a way to associate any portion of the

specification with other relevant material for greater coherency. The keyword can be

used within any portion of a part specification; allowing parts themselves or explicit

static or dynamic attributes to be additionally supplemented. Such supplemental

material could include: another document, an image, a video file, an interactive

prototype, or anything else that might assist the developer. The link keyword is added

53

with the assumption that specification documents will exist as electronic resources

capable of being networked with other valuable media resources.

4.2.6 Formatting Modifications

In order to make the visual requirements language comprehensible, it must be

visually appealing to its users. A specification document is of little to no use if it is

not easily understood by a developer. In order to meet this goal of readability and

clarity, formatting modifications have been made to the original UIML prose. As can

be seen in the various figures in sections 4.2.2 through 4.2.4, the new specification

language drops the code-like syntax of the UIML. Instead, the visual requirements

language relies on headers and indentation rather than tags to symbolize logical

divisions in the text. The new language's formatting is characteristically part-centric.

All requirements pertaining to a specific part are found at the part definition level.

Each part begins with its unique identifier and class name, followed closely by

headers for its attribute types. Attributes are distinguished through the usage of

indentation for easy identification. Finally, subsequent parts are defined under the

heading of subsumed parts and also make use of indentation to call-out the

parent/child relationship present between related parts. The visual requirements

specification language captures all of its requirements using this block template for

each part. A part template for the visual requirements language is provided in Figure

4.10.

54

PARTED)
Name: Class Name
Attributes:

Static Attributes:
1) attribute 1
2) attribute 2
3) attribute x

Dynamic Attributes:
a) attribute a
b) attribute b
c) attribute y

Subsumed Parts:
CHILDPARTED)
Name: Class Name

Figure 4.10 Visual Requirement Part Template

In addition to headings and indentation, the new language also benefits from

other minor formatting details. Using a different unique identifying scheme for each

set of outline bullets assists in keeping various articles of the specification exclusive

from one another. For example, when labeling parts, upper-case letters are used. To

distinguish the static dynamic attributes from both one another and the parts, numerals

(1,2,3) and lower-case letters (ab,c) are used respectively. Other minor notations such

as using simply color-coding are encouraged where useful, but not required.

The resulting overall language is both more readable and easy to create using a

simple word processing application. Upon completion of the specification, the Ul

designer can forward the documents to the functional design team who can then

incorporate them into the overall project design sent to the developer. While the new

language does not keep the strict formatting associated with an XML-compliant

language, it does maintain a rigid overall structure. As a result, the language for visual

requirements is still able to be parsed, if such a need were desired. The implications

and related significance of this are discussed in Chapter 7.

55

4.2.7 Additional Features of UIML

The specification for the UIML given at [14] is in its third version and

continues to undergo revision. As a new specification language, the language for

visual requirements only elaborates upon the core values of the UIML rather than its

specification as a whole. Attempting to enlarge the visual requirements language so

that it effectively maps to each specific area of the UIML is both infeasible for the

scope of this research, as well as likely irrelevant to this area of research. It has not

been fully analyzed as to whether the remainder of the UIML specification would be

useful towards specification components in a visual specification language, although

it is seemingly unlikely. The UIML's extended features, such as additional attributes

for category tags, platform presentation details, and others are not immediately well

suited towards conveying requirements. Rather, many of these types of features

within the UIML exist to allow creative design of an interface, whereas in this case all

interface design is done prior to using the specification language to capture

requirements. However, this assumption does not altogether eliminate the usefulness

of the overall UIML specification. Further discussion and possible future research in

this area are covered in Chapter 7.

5. APPLYING THE VISUAL REQUIREMENTS SPECIFICATION LANGUAGE

5.1 Application on the Timeline Tool WCSS

The new specification language can be applied to the Timeline Tool WCSS as

an example of what a full visual requirements specification might contain. In this

chapter, we focus on a few key areas of the Timeline Tool's visual requirements. A

specification for the entire Timeline Tool (excluding additional cluster information) is

given in Appendix B. Portions of the specification within this chapter are segmented

to allow commentary and to call attention to specific instances of visual requirements.

The prose examples given here were all created using a simple word processor with

capabilities for adding hyperlinks and images.

Using the visual requirements specification language, the specification

document is able to uniquely and carefully follow the same design structure as the

interface itself. An overview of the Timeline Tool design structure is provided in

Figure 5.1 and Figures 5.2 and 5.3.

56

57

Multi-Miss!o eale ~so
Display

Central PeihrlCentral Perlphexal
Visualization raigVisualization Fýramning

Cluster

Central Perxi~pheal

Visualization, FraTn

Figure 5.1 Timeline Tool Design Concept

The design concept for each area of the Timeline Tool follows a repeating pattern

featuring a central visualization with additional attributes shown in the peripheral

space. Following a design pattern allows work-orientation goals to be met at each sub-

pattern level. It also cuts down on the variations required to specify the interface

model. We begin specification with the multi-mission display and work inwards

towards the lowest level of requirements. Using this top-down approach guards the

specification from missing any subtle low-level details.

I. Multi-Mission Display Visual Specification
A)
Name: Multi-Mission Display
Link: Multi- Mission-Disjplay

Attributes: None
Subsumed Parts: 2

AA)
Name: Mission Sorting Display
Link: Al ision-Sort ing-Dispiay
Attributes: None
Subsumed Parts: 0

58

AB)
Name: Mission Selection and Core Display
Link: Mission-Selection-Core-Display
Attributes: None
Subsumed Parts: 2

ABA)
Name: Mission Selection Column
Link: Mis4ion-Selection-Colunin
Attributes:

a) Event: Mission is selected (double click)
Action: Load corresponding detailed mission view for

selected mission
Subsumed Parts: Multiple

ABB)
Name: Core Displays
Link: Core-Displays
Attributes:

1) Timespan view = 24 hours
2) Time format = GMT
a) Event: Alert status change

Action: Change color of individual core display dependent
upon alert status

b) Event: Horizontal scrolling left or right
Action: Scroll forwards or backwards in time on all core displays

e) Event: Double click on any part of an individual mission core
Action: Switch to Detailed Mission View of selected mission core

Subsumed Parts: Multiple

ABBA)
Name: Core Display
Link: BA

ABBB)
Name: Time Indicator
Link: Time-Indicator
Attributes: None
Subsumed Parts: 0

Figure 5.2 Multi-Mission Display Visual Specification

The multi-mission display is specified into two separate divisions. The first is

the relatively simple Mission Sorting Display, which is where missions are able to be

filtered and sorted dependent upon user input criteria. The second and more complex

is the Mission Selection and Core Display. Within the Mission Selection Column (part

59

ABA), the ability to select and bring up a mission in the detailed mission view is

captured by dynamic attribute a. This part has multiple subsumed instances of

individual mission buttons, but the fine details concerning those parts were omitted

for brevity (see Appendix B for a complete listing). Part ABB describes the Core

Displays area of the multi-mission view. This part is probably the most important item

in this portion in terms of retaining a work-centered focus throughout development.

As a result, many static and dynamic attributes are given to it in order to capture

detail. Here we find a vital alert-related requirement in attribute a. This dynamic

attribute covers the situational awareness support feature, allowing the user to monitor

many missions and be notified when a mission goes on alert. If a requirement such as

this were left unspecified, the alert notifications could be implemented incorrectly or

non-optimally, possibly eliminating much of the work supporting ability of the multi-

mission display. Note that all attributes specified at the Core Displays level will apply

to each individual core display which is listed as a child part. The Core Display part

given in ABBA contains only a link to part BA. As parts such as the core display are

reused throughout the Timeline Tool, here we delineate the full specification to one

defined location, part BA. Images for each part's link contents can be found alongside

the full specification given in Appendix B.

II. Detailed Mission Display Visual Specification
B) Name: Detailed Mission Display
Link: Doetailed- Mission-Display
Attributes: None
Subsumed Parts: 2

BA) Name: Flight Data Depiction
Link: Flight-Data-Depiction
Attributes: None

Subsumed Parts: 3

BAA) Name: Departure Data
Link: I)cparture-Data
Attributes: None

60

Subsumed Parts: 4

BAB) Name: Central Core Timeline
Link: Central-Core-Timeline
Attributes: None
Subsumed Parts: 1

BABB) Name: Central Timeline Window
Link: Cenitral-Core-Timeline
Attributes:

d) Event: Content change
Action: CALL respective data sources for child parts

Subsumed Parts: 2

BABBA)
Name: Time Points
Link: Tinue-Points
Attributes:

1) Location = Along solid and dashed lines
2) Base color = white

a) Event: Time point flagged
Action: Change color of time point from white to black

Subsumed Parts: 4

BABBB)
Name: Timeframes
Attributes:

1) Display type = lines/bars
Subsumed Parts: 4

BABBBA)
Name: Flight Capability Timeframe
Link: Flight -Capability-Timefranw
Attributes:

1) Location = top of central timeline window
2) Line type = dotted

Subsumed Parts: 0

BABBBB)
Name: Flight as Planned Timeframe
Link: Flihlit -as- Planned-Tinifraine
Attributes:

1) Location = center of central timeline window
2) Line type = solid black
3) End points = diamond time points

Subsumed Parts: 0

BABBBD)
Name: AR Window of Opportunity Timeframe
Link: AfI-Winidow-of-(hOportuiity-Tiuzz'frame
Attributes:

1) Line type = colored bar

61

a) Event: CALL go/no-go reservation
Action: Bar color change

Subsumed Parts: 0

BABBC)
Name: Status Indicators
Link: Status-Indicators
Attributes:

1) Location = attached to time point where time difference exists
2) Size = difference between projected time and actual time
3) Color = red for negative difference, green for positive difference
4) Direction = right for negative difference, left

for positive difference
a) Event: CALL content feed

Action: Modify static attributes to accurate values
Subsumed Parts: 0

BABBD)
Name: Status Bars
Link: Statub-Bars
Attributes:

1) Location = attached to end of flight as planned timeframe
2) Size = difference between project time and actual time

3) Direction = right for negative difference, left
for positive difference

a) Event: CALL content feed
Action: Modify static attributes to accurate values

Subsumed Parts: 0

BAC)
Name: Arrival Data
Link: Arrival-Data
Attributes: None
Subsumed Parts: 4

Figure 5.3 Detailed Mission Display Visual Specification

The detailed mission view of the Timeline Tool has a much wider variety of

requirements that must be captured in order to support the user's work practices.

Starting at the highest level, the detailed mission view is divided into the Flight Data

Depiction (core display, part BA) and the Cluster Display (to be covered later in this

section, part BB). The Flight Data Depiction has three subsumed parts: Departure

Data, Central Core Timeline, and Arrival Data. The departure and arrival data

segments are peripheral boxes which surround the central display. They both contain

similar content, which is arrayed and positioned within their allotted rectangular

62

space. The Central Core Timeline is where the majority of the detailed mission

requirements lie. Within the Central Timeline Window, a dynamic attribute captures

the behavior of the many various data streams responsible for all active content. As

the Central Timeline Window contains a large amount of data arriving from different

sources, it is effective to specify at this level that each will behave as a result of an

incoming data feed.

The main two elements within the Central Timeline Window are the individual

Time Points and Timeframes parts. Time Points, as might be described within an

external toolkit vocabulary, are way-points throughout a mission which signify

events. Each time point represents an event occurrence of note during a mission. As a

way-point is achieved mid-mission, it is correspondingly "flagged" by the

commanding officer. As a result, here there exist attributes describing the color and

behavior of flagged/non-flagged time points. Time point location is also an important

attribute as it ensures that each is placed along the overall mission timeline and not

freestanding or floating. Eliminating clutter and capitalizing on the horizontal time

axis layout allow Time Points to blend seamlessly into the workstation display.

Timeframes represent periods of availability and prediction estimation for

flight-related events and activities. They are created as lines or bars in contrast to the

points or icons used for mission way-points. Three examples of specific child

timeframes are specified in order to show the variability for different child types. Note

that for each type, there is a uniquely assigned line type (dotted, solid, and colored).

This line type, along with location, distinguishes each timeframe from the next, again

allowing a user to easily identify and view multiple data streams in a coherent, non-

chaotic way.

63

The final two parts of the Central Timeline Window are Status Bars and Status

Indicators respectively. These two elements work in a similar manner to display

variances from originally intended flight times and schedules. Together, they identify

when a mission is ahead of or behind schedule by their color, size, and direction.

Status Bars attach directly to Timeframes, while Status Indicators connect to Time

Points. Although there is no direct method for linking this pair of related parts, static

attributes are applied referencing correlated part location. By specifying clearly the

details of what and where these parts should be, the work-oriented visual aiding

possesses continuity over the entire user interface. A user no longer must "eyeball"

how far behind a mission is, nor must they compute differences in current time and

estimated time of arrival. Instead, automated agents compute and stream data to the

interface which displays Status Bars and Status Indicators for the user to visually

inspect. The turnaround time in reaction to these visual aids is nearly simultaneous

due to their favorable location and color-coding. Diagrams and sketches describing

Status Points and Status Indicators are included in Appendix B as link reference

materials.

Due to the large volume of requirements and parts associated with the detailed

mission view, many parts and attributes have been omitted in an effort to emphasize

those which best display various visual requirements categories. Any discrepancies in

numbering or labeling are as a result of these omissions. The full detailed mission

view specification can be found within Appendix B.

The final portion of the Timeline Tool and the second half of the detailed

mission view is the Cluster Display. Its specification can be found in Figure 5.4.

64

BB)
Name: Cluster Display
Attributes: None
Subsumed Parts: 6

BBA)
Name: Diplomatic Permissions Cluster
Link: I)iploniatic-Perniissions-Cluster
Attributes: None
Subsumed Parts: 3

BBAA)
Name: DIP End Tab
Attributes: None
Subsumed Parts: 2

BBAB)
Name: DIP Time Window
Attributes:

a) Event: Disagreement of DIP/nation clearance
Action: Change status colors to reflect disagreement

Subsumed Parts: 2

BBABA)
Name: Nation Overflight Indicators
Attributes:

1) End Points = Diamond Time Points
2) Indicator Type = Horizontal Color Bar
a) Event: Multiple Nation Overflights

Action: Different color shading for each overflight
Subsumed Parts: 0

BBABB)
Name: DIP Clearance Indicators

Attributes:
1) Indicator Type = Horizontal Color Bar
a) Event: Multiple DIP Clearances Present

Action: Different color shading for each indicator
Subsumed Parts: 0

BBAC)
Name: DIP End Tab
Link: BBA.A

BBD)
Name: Airfield Cluster
Link: Airfield-Cluster
Attributes: None
Subsumed Parts: 3

BBDA)
Name: Airfield End Tab

65

Link: Airfield-End-Tab
Attributes:

1) Height = 100 pixels
2) Width = 80 pixels

Subsumed Parts: 5

BBDB)
Name: Central Airfield Timeline

Link: Ceintral-Airfield-Timeline
Attributes:

1) Height = 100 pixels
2) Width = 520 pixels
a) Event: Mouse over any subsumed part

Action: Display Time Parameters Tooltip
b) Event: Alert/Violation

Action: Change Color-coding
v) Event: Port Display Region

Action: CALL get projected arrival times for airfield
Subsumed Parts: Multiple

BBDBA)
Name: Individual Timelines
Link: I ndividual-Timtlinet
Attributes:

a) Event: Content Data Updates
Action: CALL respective data sources for subsumed parts

Subsumed Parts: 5

BBDC)
Name: Airfield End Tab
Link: BBDA

BC)
Name: Time Indicator
Link:Aum

Figure 5.4 Cluster Display Visual Specification

Of the six clusters developed for the completed Timeline Tool, the Diplomatic

Permissions and Airfield Clusters are specified here. Both clusters follow the same

design pattern set forth in the Timeline Tool design concept. The Diplomatic

Permissions or DIP Cluster contains a pair of bounding boxes and a central

visualization depicting nation and permissions information. The DIP Time Window

(part BBAB) outlines one attribute which defines behavior when gaps exist between

permissions. This is critical to the mission planner, as not obtaining appropriate

66

permissions prior to entering foreign airspace can be a high priority alert and

dangerous risk. The Nation Overflight Indicators and DIP Clearance Indicators both

follow the same formatting as that of Timeframes within the core display. Using color

shading makes it easy to view when clearances and nations overlap.

The Airfield Cluster varies from the other clusters only slightly in its content

and behavior. Dynamic attribute c within the Central Airfield Timeline captures the

dynamic requirement of displaying visual information only when a specific port is in

range. As this behavior is defined at the individual cluster level, it will only apply to

the Airfield Cluster. As the Airfield Cluster itself contains five separate data streams,

each is divided into an individual timeline which then draws in and displays data. As a

result, the Airfield Cluster performs exactly as it was designed; providing associative

mission data in a location and formatting which supplement but do not distract from

the core mission summary.

In an effort to provide a well-rounded understanding of the entire Timeline

Tool package, Figures 5.5 and 5.6 display several screen shots taken from initial

prototypes of the Timeline Tool system.

67

~ 14~ M __ ~ Ai~A ~ -tin "

N -Mali -.............

-mat

KV99 ...---- - ------ ~ -

Figure 5.5 Multi-Mission Prototype

OfwuAI TOWN

EnS EASE 0500

E*tf0 00EE006MA O NA

Cl RE M 0 0

,~. . .g .S ~mi.........

Figure 5.6 Detailed Mission View Prototype

Generally, the prototypes of both the multi-mission display and the detailed

mission display are exact depictions of the design screens. However, several subtle

differences have been incorporated. Within the multi-mission view, the ability to

search and sort missions has been integrated into a smaller area, as well as into the

program bar at the top of the screen. Also, the mission selection buttons on the left

hand side have been dropped in favor of using the mission tabs themselves as detailed

mission view links. Changes such as these reflect necessary and obligatory design

68

trade-off points that occur while software is being developed. Specification tools such

as the new visual requirements language do not simply rid development of these

trade-offs, but rather seek to educate the implementation team so that wise and work-

conscientious development decisions can be made that do not jeopardize the overall

interface design.

In its entirety, the visual specification given in this section provides the

concrete visual requirements necessary for this portion of the software interface to be

developed according to a work-oriented framework. While it may not seem as if every

mundane detail of the interface was addressed, it is vital to recall that only

requirements and interface parts which are intrinsic to the nature of the work being

done need be specified. It is this collection of UI elements which will constitute a

working WCSS when realized and developed according to the design framework.

This realization enables the designer to possess a certain amount of flexibility in

specifying a design, as well as keeping the development of a WCSS from being too

impractically stringent in its requirements.

The visual requirements specification language captures the valuable display

information and provides a channel for communicating it effectively to the developer,

ensuring a functional work-centered software system as a result. In contrast, using

other current approaches (with only UML) leave behind valuable visual design

requirements. These details, such as the assimilation of many data layers into the

simple timeline view, comprise the work-centered software representation which

allows the completed functional application to meet the user's need in an optimal

manner. Without specification of such details, it is unlikely that any work-centered

software system can be accurately realized in a non-specialized development setting.

The visual requirements specification language contributes significantly towards the

69

end goal of work-centered software being developed through a coherent software

process.

6. INTEGRATING THE VISUAL REQUIREMENTS
SPECIFICATION LANGUAGE

6.1 UML Augmentation

In order to be applicable to standard software engineering practices, the new

specification language must integrate well with existing software modeling

methodologies. This is quite easily done via the UML's various facets for extension.

In Figures 6.1 and 6.2 are two examples of integration: using the UML package

notation to group functional (UML) specification and related visual requirements

specification together, and using the UML comment notation to include links to visual

specification at appropriate design points. A newly devised visual specification

language complements the UML with addition capability for capturing overall system

design, both process and presentation.

UML P!kase I

Class Dhagaa I fli

&t.vity

Visual

Figure 6.1 UML and Visual Requirements Language Package Integration

70

71

The UML package diagram is excellent for integrating additional specification

materials because of its grouping construct which allows the combination of elements

into higher-level units [2]. Packages are quite useful for large-scale and complex

systems as they give a way to appropriately layer design components into

compartmentalized groupings. In the example given in Figure 6.1, a generic UML

package is shown with various other UML diagrams contained within it. In this mode

of application, a visual requirements specification would be inserted when it is

directly related to a majority of the diagrams within the overall package. For example,

the class diagrams shown here might be specifically related to certain visual elements

and display pieces, such as buttons or controls. A sequence diagram could show

background computations and interactions done as automation support which is then

linked to specialized UI display panels. An activity diagram might represent

functional components which undergo many transformations during usage and as a

result effect the display transformations as well. These few examples are just a

sampling of ways in which the most popular of the UML's diagrams would be usable

alongside visual specification. The usage of the package diagram is directly helpful

when the back-end code is directly related to the user interface and work-aiding

display. Interrelated classes and extensive communications between interface and

functional code are simplified through the usage of packages.

72

Unk to vistul
Spiicmatin Part

ABCD Unk to VlxWa
".,, ~~Spec..tf"catlo•

Documral I

Seuence Diagramn I

Class Diagram I

Figure 6.2 UML and Visual Requirements Language Comment Integration

The UML comment notation is much more flexible in terms of usage than that

of the package diagram. UML comments can be inserted into any UML diagram via a

dotted line and corresponding comment box. In this manner, any UML diagram can

receive additional preface and explanation. Consequently, this notation is perfect for

the insertion of visual requirements specification material. Since visual requirements

can be linked not only to classes, but also sequences, activities, components, or use

cases, it is advantageous to be able to insert linkages to visual specification wherever

necessary to do so. This goal is achieved by utilizing the comment notation to provide

necessary connections to specific visual specification parts. The chaining together of

functional UML diagrams with visual specification provides the developer with the

means to understand how the functional code is related to the visual display panel and

resulting work-context. It also eases the difficulty of integrating the final compiled

code with the visual interface by enabling development of both to proceed together.

Using UML comments to fuse visual specification together with functional design

models prepares the developer to create accurate high-quality work-centered software

which meets both its visual and non-visual requirements.

73

6.2 Work-Centered Software Process

A critical question for the future of work-centered software is how it can be

effectively scaled to a large scale development project. As a prototype design

technology, Work-Centered Design theory has yet to be tested and employed on a

system involving a large development team. In each software system developed using

WCSS theory, the overall design and development team has been composed of a

relatively small amount of cognitive and software specialists. Therefore, it is of worth

to consider how work-centered practices might be applied to a development

environment of more than fifty people. For work-centered software to be reasonably

developed in the broader software community, its principles must be incorporated into

a standard software process. Each phase of such a software process must blend the

aspects of work-centered theory with those of traditional practice, producing a

coherent lifecycle model. Creating such a linkage within the software development

chain is complicated enough, despite attempting to couple it with work-centered

practices. Thanks to standardized tools, such as the UML, connecting the various

development phases of prevailing software development has been made manageable.

Unfortunately, little to no tools and resources have been developed to aid the

integration of WCSS principles into a software process. The success of future WCSS

deployment hinges upon the creation of software design tools which can capture and

communicate the essentials of this emerging design concept.

As mentioned in section 2.1.2, some research has already been devoted to the

area of Work-Centered Design. This starting point can be viewed as the foundation

for a work-centered software process. By involving both cognitive scientists, software

engineers, and other domain experts, the initial framework for a work-centered

74

software system is in place. However, it is after this point that the amount of

resources, tools, and methods becomes strikingly sparse. It is not realistic to propose

that a work-centered focus can be maintained throughout development without the

assistance of a specific set of direct communication methods. In the effort to begin to

amend these deficiencies, the visual requirements specification language aims to be a

contributing software development tool for maintaining a coherent work-centered

software development lifecycle. However, the language itself along with its UML

augmentation does not come close to filling the entire need for work-centered

development tools. Figures 6.3 and 6.4 illustrate two different views of the stages

necessary to develop work-centered software.

Design Desig
Knowledge Knowledee

Trauder Transfe

*1 #2

Fige 6Woak-Csent erie w fistadard Bwar
l en intesraion , p ro i-Ce itae ,
Pre liminary Des Design Softbl e

Design

Personnel of Cognitive System Engineering of this stgnitiv
Knowledge and WCSS Theoy

Bane

Figure 6.3 WCSS Development Procesi

Figure 6.3 displays a general overview of standard work-centered software

development. It begins with the elicitation of requirements from the problem space,

and the construction of preliminary design ideas which will solve the problem. In the

case of a work-centered support system, this stage is completed mainly by cognitive

experts who are able to draw out the work-context and establish a knowledge capture

of the worker's perspective. From this knowledge capture data, a complete work-

75

centered design is created which constitutes the foundation for a work-centered

support system. The design itself intrinsically supports the work necessary to satisfy

the problem requirements. Once the work-centered design is complete, it is handed off

to a developer for the remaining stages.

The developer has the job of supplementing the work-centered design with

components and details of a functional system design. This portion of the design is

composed of items such as data structures, platforms, data types, and algorithms.

While the work-centered design specifies all the necessary items for a work-aiding

system, it does not contain vital implementation planning and design. As a result, this

transition is labeled as design knowledge transfer #1. The work-centered design is

exposed to risk as it is transferred into the hands of a developer to complete. Once the

full design is complete (both work-centered and standard functional designs), coding

and development can begin.

The final stage is to have the software built by a development team. The

amount of personnel involved in this stage is likely to be a much larger number than

that of earlier stages. This creates the second design knowledge transfer, as well as

many associated risks. Here, the design must be correctly interpreted and

implemented accurately, most likely by programmers who have the least amount of

knowledge about the work-context. Decisions made in this stage could dramatically

effect how successful the resulting WCSS turns out to be. It is of utmost importance

that the transition to this stage be done fluidly and comprehensibly, otherwise

confusion may lead to a disappointing end result.

At the bottom of Figure 6.3 is a chart describing the knowledge of personnel

working on the project throughout each development stage. This is done to show how

76

the further a project progresses, the more it moves away from a cognitive and human

factors focus and towards a software engineering center. It further illustrates the

necessity for coherency throughout the work-centered lifecycle in order to maintain

the core facts and requirements which judge the final software as effective or

ineffective.

77

1'K
fpp

iFI

Ii

46' 1

14i
I .

i'I
ii

Fgr 6

Fiue64Wr-etrdSfwr rcs oe

78

Figure 6.4 shows a more complete sketch of a work-centered software process.

While it is somewhat abridged, leaving out aspects such as testing, maintenance, and

lifecycle type (such as waterfall or spiral), it displays conceptually the various

essential components of a plausible work-centered software process. The two

rectangular dotted boxes separate the key aspects of each engineering discipline,

showing how the two differ and eventually must relate. The bottom half of the figure

can be seen as what constitutes a traditional, non-work-centered approach. The top

half represents the work-centered design framework. Indications are made where the

visual requirements specification language and its UML augmentations can be

employed throughout the process. The presented process within Figure 6.4 draws out

several noteworthy characteristics and implications.

The first key characteristic is that although both software engineers and

cognitive scientists share the same problem space for developing a software solution,

they utilize that space in alternative ways. This diversion of both requirements and

design is caused by a separation in design intent and perspective. The cognitive

perspective looks for the overall work-context and framework in which the problem is

set. It encapsulates this framework by constructing an ontology made up of key

artifacts which are related to the user's work. It is from this distinction that a work-

centered design is articulated and devised. From the software perspective, the problem

space is a logical and mathematical dilemma which can be effectively managed and

computed using a series of data structures and calculations. The functional design is to

be a robust and efficient solution to the problem's requirements. Each discipline

approaches the problem from a different perspective, achieving two different results

which both contribute to the final software.

79

The second critical characteristic of a work-centered software process is the

notion of coherency. It is not enough to simply state that the cognitive and software

disciplines are different and must both be employed to complete a project

successfully. Coherency must be an attribute which is incorporated into both schools

of development. Both sets of design teams and models come together in the design

synthesis and integration stage. How well concepts and ideas have been

communicated becomes most apparent only once the final software has been

delivered. While the majority of this paper speaks of developing tools and methods

which enable cognitive and human factors experts to associate and create

specification for software engineers, coherency addresses not only the cognitive

science field, but also the software field. Software engineers must adhere to standards

which permit and encourage communication during the final steps of implementation

to avoid the destruction of vital work-centered details. Otherwise, the framework for

coherency will be lost in the penultimate stages of the project. Coherent

communication between diverse design and development teams can ensure a

successful software venture.

Finally, work-centered design and theory are still relatively new technologies.

It is without a doubt that they have not been completely exhausted in terms of design

components, stages, and theories. As the work-centered paradigm continues to evolve,

a more distinctive picture of a work-centered software process will be clear. Details

and information regarding additional portions of work-centered theory and its relation

to software engineering are addressed in Chapter 7.

7. REVIEW AND RELATED SUBJECTS

7.1 Review of the Visual Requirements Specification Language

As a software specification tool, the visual requirements specification

language based upon the user interface markup language is a positive first step

towards a unified work-centered design model. The visual specification language

contributes considerably in the area of bridging software engineering with cognitive

engineering and human factors design by allowing work-centered visual designs to be

specified semi-formally into a UML object model. By employing the language on a

visual interface, each portion and part of the display can be decomposed and

identified at an appropriate level of detail. Using an XML-compliant scalable

structure makes the language flexible enough to capture visual requirements of any

user interface design, yet simple enough that it can be employed by cognitive

scientists and human factors experts. By encapsulating the crucial visual requirements

inherent to a work-aiding interface display, the risks associated with transmission of

vital work-centered design artifacts are significantly reduced throughout development.

The visual requirements specification language employs four categories of

tags to capture visual display content. Each attribute tag encompasses a specific area

of work-related content essential to the creation of a work-aiding display panel. The

language separates interface objects into distinct parts via unique labeling and

80

81

associated class names. Its nesting structure permits parent/child relationships and

easy inheritance of specific design attributes. The language's static and dynamic

attribute fields pertain to any and all characteristics of individual UT parts. Behavior of

individual and collective interface parts is distinctly and accurately modeled using

action/event pairs within dynamic attributes. An additional link module allows

designers to connect useful multimedia and documentation directly to effected parts.

The entire language follows a simple template layout, making the creation of

specification documents easy using any text editor.

In addition to its definitive structure and set of features, the visual

requirements specification language can be integrated into a standard UML object

model using two different methods. The UML package structure allows visual

specification to be included along with other visual-related functional diagrams such

as classes, sequences, and activities. The UML comment notation gives easy access to

individual UML diagrams which can be linked to specific visual interface parts. By

connecting the visual requirements with the overall design model at large, developers

are less likely to omit important work-centered details. Having all of a specification in

a single document eliminates excessive materials and reduces the amount of stress on

a developer to integrate miscellaneous system components.

Creating coherent, stable work-centered software using the visual

requirements language is less prone to detrimental setbacks and misinterpretation

mistakes typically present when developing work-centered software. The visual

requirements specification language serves as a bridge on which software engineers

can receive and comprehend cognitive design strategies which are becoming more

and more prevalent in mainstream system development. Using the visual requirements

82

language ensures the transmission of vital work-centered visual details from design to

development.

7.2 Related Subjects

7.2.1 Inclusion of Cognitive and Work-Context Data

During the process of work-centered design, large amounts of work-context

data is collected during elicitation and knowledge capture stages. This information is

collected by a team of cognitive experts studying the field of practice in which the

WCSS will reside. Large quantities of data regarding the entire work operations

context make it easier to analyze and create a work-centered design which is an exact

match to the needs of its users. Once a design has been established, the cognitive data

serves as justification for the various design decisions and aspects of aiding

characteristic of a WCSS.

Current practices indicate that an enormous amount of this cognitive

knowledge capture material should be transferred to the system developer. The

justification for this practice being that the more information a developer obtains, the

more easily they will understand what the work-centered design is attempting to

achieve. However, in attempting to educate the developer on work-centered practices,

the design team inadvertently encumbers the developers with the excessive cognitive

knowledge base. There are several reasons why this encumbrance occurs and why the

thinking behind it is flawed.

First, the developer and development team cannot possibly utilize all of the

data present in the transcripts of work-orientation data. These documents often

number in the hundreds of pages, making it a burdensome task to attempt to relate all

83

of its information to the final design presented for coding. Second, the development

team is not a set of cognitive and human factors specialists. Their projected ability to

reasonably and accurately understand and apply the information contained in

knowledge capture reports is unlikely at best. Sending large quantities of this data

raises the potential for wrong interpretation even more. Finally, the coding team

typically has enough tasks and assignments without the addition of comprehending

supplementary cognitive material. Software projects continue to struggle with

deadlines and other setbacks due to external reasons, gross documents on work

practices and environment need not add to this collection of burdens.

However, the original question answered by the cognitive experts in delivering

the work domain capture remains. How much information about the work context

should be included in a design transfer? Is such a design safe without the inclusion of

any? Different views are held on both sides of this issue. This paper does not state an

absolute amount necessary; rather it supports the view that all essential cognitive and

work-related materials can be represented through the use of software development

tools and methods. By creating unique and specific methods to capture work-related

information, there need not be an additional burden in work-centered software

development. Since information regarding work-centered requirements must be

transmitted at some particular point during the software process, it can and should be

linked directly with any cognitive materials necessary to fully comprehend and make

well-educated design decisions at trade-off points.

The ineffectiveness of a complete work knowledge capture transfer has

already been identified by the WCSS and Work-Centered Design experts at AFRL. In

light of this, research in the area of providing work-design representations in a semi-

formal syntax is already underway. This encapsulation of cognitive context data is

84

similar in nature to materials which would be found in the visual requirements

specification language's toolkit vocabulary used to provide additional informative

data for visual specification parts. It is plausible to say that the new specification

language could be linked and integrated with a cognitive design specification

language or structure in future development research.

7.2.2 Functional Work-Centered Requirements

This paper specifically addresses the problem of specifying and

communicating work-centered visual requirements. However, throughout the research

done on WCSS theory, it is quite apparent that there exist more than simply visual

requirements associated with standard WCSSs. Although it is difficult to fully

illustrate the variety of WCSS requirements because WCSS theory continues to

evolve and grow, it can be estimated that there are several other types of requirements

aside from visual within typical work-centered designs. Locating and identifying all

the various types of requirements is a task which will be of utmost importance as

work-centered software grows in popularity and corporate acceptance. Once

classified, methods for procurement and transmission can be made to further serve the

creation and acceptance of a widespread work-centered software process.

One particular area of WCSS requirements noted during research was that of

automation. Automation agents serve as the functional half of a WCSS. These

automating devices directly aid the user by performing calculations in the background

to simplify the user's job and provide additional work support. Obviously these agents

do not have visual requirements as they rarely, if ever, are seen on a display screen.

Instead, these agents can be categorized more accurately as standard functional

requirements such as those captured by the UML. In essence, automation

85

requirements can be viewed as additional functional calculations to be performed by

the central computing portion of the software. While these agents may never be

devised by a standard software engineer, since they would be seen as unessential extra

computations and objects, they are nonetheless helpfully supportive to the user and

the accomplishment of work. Whether all of these types of requirements can be fully

addressed and captured using the UML has yet to be determined. However, it can be

assumed that at least a portion of automation requirements would fall into this

category. Methods and techniques for communicating and integrating these

requirements into a final design is also yet to be addressed, but will be integral in the

further understanding and completion of work-centered software at a higher level.

7.2.3 Integrating the Visual Requirements Specification Language into a

Development Environment

As a language based upon an XML-compliant meta language (UIML), the

visual requirements specification language still retains its ties to the parsable and

syntactical structure of the XML. Despite modifications made to make the language

more suitable to cognitive and human factors personnel, the overall document

structure, although rearranged, remains intact. There exist many possibilities for this

attribute, namely the ability to integrate the language into a higher-level development

environment. Programs which are capable of rendering prose contents into an

immediate visual depiction could be employed for the creation and review of design

specification. Moving the opposite direction, applications could be made which allow

a designer to first draft a screen design using drawing and palette tools, then specify

that design using built-in click and drag capabilities, and finally view an automatically

generated text specification! As web design programs make use of such features for

displaying previews and code within the same viewing area, so too can specification

86

languages such as the visual requirements language be employed to make the job of

designing and specifying a more computer-aided one. Further abilities in transferring

and editing designs across long distances more manageably can be researched and

developed as a result.

7.2.4 Expanding the Visual Requirements Specification Language

As mentioned earlier in section 4.2.7, the UIML basis for the visual

requirements languages contains many other specialties and constructs than just those

which were integrated into a specification language. As an XML-language, the visual

requirements specification retains all the properties thereof, meaning that changes and

modifications can be made to upgrade the language to current standards and practices.

As research continues to be done in WCSS design theory, specification needs will

become more prevalent and apparent in particular requirements areas. As these needs

are illustrated, specification resources can be re-evaluated for usefulness and

accuracy. Modifying the visual requirements language to include more UIML related

materials, or additional un-related cognitive specification is available via the open

XML document definition standards.

APPENDIX A

INSTRUCTIONS FOR EMPLOYING THE
VISUAL REQUIREMENTS SPECIFICATION LANGUAGE

This appendix outlines instructions for applying the visual requirements

specification to specify a work-centered interface display for a development team.

I. Review the interface design and determine where logical divisions can

appropriately be made.

(a) These divisions should be natural in separation. For example, two

distinct screens would merit two distinct portions of specification.

(b) Initial divisions will typically be broad (i.e. an entire screen, a large

interface panel, etc) so that appropriate sub-divisions and specification

can subsequently be made.

2. Divide the interface into separate logical and physical portions which partition

the entire interface at the topmost level of abstraction.

(a) Each of these portions will be the "parent" of all parts contained within

them.

3. Select one of the top-level portions to specify.

4. Give this portion of specification a unique identifying header (A, AB, etc.) and

name (Graph Display, Spreadsheet Panel, etc.).

5. Identify any static (unchanging) attributes (colors, shapes, text) for this part

and all subsumed parts.

87

88

(a) Remember that any static attributes specified at the parent level will

apply (where applicable) to subsumed child parts as well (e.g. use all

red text).

6. Specify a static attribute under the "Attributes" category, by giving each a

unique header (1, 2, 3) and stating the property in an X = Y format.

7. Be sure to use appropriate indentation to separate attributes from other

specification.

8. Repeat step 6 for any and all remaining static attributes for this part.

9. Identify any dynamic (changing) attributes (motion, actions, behaviors) for

this part and all subsumed parts.

(a) Remember that any dynamic attributes specified at the parent level will

apply (where applicable) to subsumed child parts as well (e.g. tool tip

text)

10. Specify a dynamic attribute under the "Attributes" category, by giving each a

unique header (a, b, c).

11. List the event which activates the dynamic attribute next to an "Event" header.

12. List the action which is taken as a result of the corresponding event beside an

"Action" header.

(a) All dynamic attributes must follow this event/action pair formatting.

13. Appropriately apply the CALL keyword where necessary within the

event/action pairs used for dynamic attributes.

(a) The CALL keyword references external functional logic and

computations done outside the interface display.

14. Repeat steps 9 - 13 for any remaining dynamic attributes.

15. Be sure to use appropriate indentation for dynamic attributes to separate them

89

from other specification.

16. Fill out an entry for this part in the external toolkit vocabulary, referencing it

using its part name.

(a) Here additional details regarding cognitive and work-context

information can be stated. For example, how a specific part of the

interface mimics and represents portions of the work-context can be

detailed in the vocabulary entry.

17. Locate any additional media and materials related to this part or its attributes.

18. Use the Link category to create linkage between additional materials and prose

specification.

(a) Links can be images, video, other documents, or other media.

19. Repeat steps 4 - 18 for each subsumed part within this part under the

"Subsumed Part" heading.

20. Use indentation to visually signify parts which are children of others. Make

sure to follow the same formatting for the entire specification.

2 1. Repeat steps 3 - 20 for each top-level portion of the interface.

22. Combine all specification materials (syntax, external vocabulary, and link

media) into a single document for delivery to developer.

APPENDIX B

TIMELINE TOOL WCSS VISUAL SPECIFICATION

Timeline Tool Wide Spiral I
AFRL/HECS
1) Multi-Mission Display

A)
Name: Multi-Mission Display

......-.......

Attributes: None
Subsumed Parts: 2

AA)
Name: Mission Sorting Display
Link: M i55sion-S4)rti11g-Di.5pIay'

Missin t So bcvon Sobl"scUca S ZoM Lewd

EXAMPLES: EXAMPLES! M2 hioursL
-ALLkin Thn.*uus -0 DuvTb. -326mw I
-Law Selection iAtvlvThmw 140 hours
-Region -Missin Priody 48hours

- -'Th,00K 1 -Ale"Slt s .56 hour,
Notion *Armour Delayed 64hor

-Depasaw. ICAG 0(..... -72 hame
'Arjysid CAC
mission rypo
*Pending L~amh

~.AN Ml~elon
-cORONT
.Poeildoilig Lis"

90

91

Attributes:
1) Location = top of screen
a) Event: Selection of filtering criteria

Action: Display appropriate missions/views
Subsumed Parts: 0

AB)
Name: Mission Selection and Core Display
Link: Misiou-Seleclo-or-iVa

...........D ~

Attributes: None
Subsumed Parts: 2

ABA)
Name: Mission Selection Column
Attributes:

a) Event: Mission is selected (double click)
Action: Load corresponding detailed mission view for selected mission

Subsumed Parts: Multiple

ABB)
Name: Core Displays
Link: Core-Displays
MISSION A ________...
MISSION B

MISSION B..........,,,...,o....

MISSION C i

Attributes:
1) Timespan view = 24 hours
2) Time format = GMT
a) Event: Alert status change

Action: Change color of individual core display dependent upon alert status
Link: Alert Status

92

RED elements connote
alert conditions or
issues requiring

action

GREEN elements
connote issues or

parameters that are",OK'

l) Event: Horizontal scrolling left or right

Action: Scroll forwards or backwards in time on all core displays
e) Event: Double click on any part of an individual mission core

Action: Switch to Detailed Mission View of selected mission core

Subsumed Parts: Multiple

ABBA)
Name: Core Display
Link: BA

ABBB)
Name: Time Indicator
Attributes:

a) Event: Time Position Movement

Action: CALL current time position
Subsumed Parts: 0

Section II) Detailed Mission Display
B)
Name: Detailed Mission Display
Link: Detailed-M ission-Display

COREU_.............. __.......... __

CLUSTER A

CLUSTER B •' ,•.

Attributes:
a) Event: Alert Status Change

Action: Change Mission Color Scheme, green for "clear", yellow for "caution", red

for "warning"
Link: Alert Status

Subsumed Parts: 2

BA)

Name: Flight Data Depiction
Link: Flight-Data-Depiction

93

IO.N 2 Of"

Attributes: None
Subsumed Parts: 3

BAA)
Name: Departure Data
Link: Dcparture-Data

.MISSION ID

r ...T D•2

(PIAHI (ACTUAL)

Attributes: None
Subsumed Parts: 4

BAAA)
Name: Mission ID
Link: Departurv-Data
Attributes:

1) Location = Top of Departure Data (BAA)
Subsumed Parts: 0

BAAB)
Name: Departure ICAO
Link: Depatrture-Data
Attributes:

1) Location = Center of Departure Data (BAAB)
Subsumed Parts: 0

BAAC)
Name: ETD (PLAN)
Link: Departure-Data
Attributes:

1) Color = Shaded different than other parts within
Departure Data (BAAB)

2) Location = lower left of Departure Data (BAAB)
Subsumed Parts: 0

BAAD)
Name: ETD (ACTUAL)
Link: Departure-)ata
Attributes:

1) Location = lower right of Departure Data (BAAAB)
Subsumed Parts: 0

94

BAB)
Name: Central Core Timeline
Link: Central-Core-Tiiueline

2 ON

Attributes: None
Subsumed Parts: 2

BABA)
Name: Time Index Bar
Attributes:

1) Content = GMT divisions
Subsumed Parts: 0

BABB)
Name: Central Timeline Window
Link: Central-Timeline- Wind ow

Attributes:

a) Event: Content change
Action: CALL respective data sources for child parts

Subsumed Parts: 2

BABBA)
Name: Time Points
Link: Time-Points

S••UARE . "r•pfnu tlriwo•hn • CIRCLE - Repot DIAMOD * Geoo44.hted wwypoS smvh

4muinp%-dj aw.po4d Iplarn.4
SThis prevld.. a .yutw ft•r holing DeparlI. I ar poe

ýhsia and I of em~plumnd Nov waypolats

* 0

' FILLED *~r - 'Actual* (Dorm) 'BLANK' a 'Plad Protectd

Attributes:
1) Location = Along solid and dashed lines
2) Base color = white

3) Shape = circle for planned reporting time point,

square for unplanned reporting time point, diamond for geo-

referenced waypoint
a) Event: Time point flagged

Action: Change color of time point from white to black

Subsumed Parts: 4

BABBB)

Name: Timeframes

95

Link: Timeframe*
DOT= LMU a CAPABUIJY FOR P.IUW# - i .OU LM = FI' AS PLAMM

AS SHOWD ic tai typy In #At
Sonusm Par prtjs:d ftht.

:CIRMRrTUU SCATOR -

*Nam: Faly ightn to Capability ARcue user on errue Gm ~~ 1Opitlt fA

Sch~duWed period of AR
reLkTvatfa

Attributes:
1) Display type = lines/bard

Subsumed Parts: 5

BABBBA)
Name: Flight Capability Timeframe
Link: Tinefraines
Attributes:

1) Location = top of central timeline window (BABB)
2) Line type = dotted

Subsumed Parts: 0

BABBBB)
Name: Flight as Planned Timeframe
Link: Timeframes
Attributes:

1) Location =center of central timeline window
2) Line type = solid black
3) End points = diamond time points

Subsumed Parts: 0

BABBBC)
Name: AR Scheduled Reservation Timeframe
Link: Timeframes
Attributes:

1) Line type = solid black
2) End points = black circles

Subsumed Parts: 0

BABBBD)
Name: AR Window of Opportunity TiTeframe
Link: Iiniefraiunie
Attributes:

1) Line type = colored bar
:A) Event: CALL go/no-go reservation

Action: Bar color change

Subsumed Parts: 0

BABBBE)
Name: On Ground Timeframe
Attributes:

1) Line Type =Dashed
2) Location = center of central timeline window (BABB)

96

inline with Flight as Planned Timeframe (BABBBB)

Subsumed Parts: 0

BABBC)
Name: Status Indicators
Link: Status-Indicators

•RED indicaes gMi Is behind
schedule land by how much)

0. hours
'I'd HERE 3YDIWOLOGY • GEE14 Indicates 0 Is ahead of

MODEL achoidul (and by how much)

.... TIME..

Rsop)ota HEPE

$ ktHEPE

Attributes:
1) Location = attached to time point where time difference exists
2) Size = difference between projected time and actual time

3) Color = red for negative difference, green for positive difference
4) Direction = right for negative difference, left for positive difference
a) Event: CALL content feed

Action: Modify static attributes to accurate values
Subsumed Parts: 0

BABBD) Name: Status Bars
Link: Stlatus-Bars

Last wsyp* kt ik ter shows
binstantaeous stw at Sue This roiuts In a ,n•nkihal " Iuecathig
powt wa X mumms 1Wh projectsd oqivulnt hk" WrWA

Running A
Late

Last wwypotl hdtkce shows 7W* In * 7nkd-db"
kait~tmenoo Stoa ts a" thdimaft proec~ted oquivabnt

polnt was X minubs *ahea" eary ar5val

I IRunning _

Early

Attributes:
.1) Location = attached to end of flight as planned timeframe
2) Size = difference between project time and actual time

3) Direction = right for negative difference, left for positive difference

a) Event: CALL content feed
Action: Modify static attributes to accurate values

Subsumed Parts: 0

BAC)

97

Name: Arrival Data
Link: Arrival-Data

--_----ARRIVAL

ITAO

S........... EA TUA L)JPLAN4

ETA
fACTUAL) r

Attributes: None
Subsumed Parts: 4

BACA)
Name: Arrival ICAO
Link: Arrivahiii
Attributes:

1) Location = Center of Arrival Data (BAC)
Subsumed Parts: 0

BACB)
Name: ETD (PLAN)
Link: Arriv al-lData
Attributes:

1) Color = Shaded different than other parts within Arrival Data (BAC)
2) Location = lower left of Arrival Data (BAC)

Subsumed Parts: 0

BACC)
Name: ETD (ACTUAL)
Link: Arrival-1)uta
Attributes:

1) Location = lower right of Arrival Data (BAC)
Subsumed Parts: 0

BB)
Name: Cluster Display
Attributes: None
Subsumed Parts: 6

BBA)
Name: Diplomatic Permissions Cluster
Link: Diploirt tic-P(-niiissions-Cluist(,r

'Now'
MUr---

Attriutes Non

98

Attributes: None
Subsumed Parts: 3

BBAA)
Name: DIP End Tab
Attributes: None
Subsumed Parts: 2

BBAAA)
Name: Nations Box

Attributes:
1) Location = top of DIP Cluster (BBA)

Subsumed Parts: 0

BBAAB)
Name: DIP Box
Attributes:

1) Location = bottom of DIP Cluster (BBA)
Subsumed Parts: 0

BBAB)
Name: DIP Time Window
Attributes:

a) Event: Disagreement of DIP/nation clearance

Action: Change status colors to reflect disagreement
Subsumed Parts: 2

BBABA)
Name: Nation Overflight Indicators
Attributes:

I) End Points = Diamond Time Points

2) Indicator Type = Horizontal Color Bar
a) Event: Multiple Nation Overflights

Action: Different color shading for each overflight
Subsumed Parts: 0

BBABB)
Name: DIP Clearance Indicators
Attributes:

1) Indicator Type = Horizontal Color Bar
a) Event: Multiple DIP Clearances Present

Action: Different color shading for each indicator

Subsumed Parts: 0

BBAC)
Name: DIP End Tab

Link: BBAA

BBB)
Name: Geographical Cluster

Link: Geoographical-Cluster

99

BBC) Name: Aircrew Cluster
Link: Aircrew-Clu-tcr

'Now,

BD) Name: Airfield Cluster
Link: Airfield-(Iiister

SHADIN4G do~otes
projctod polind

'NoWv iopot

LPiam_ _ _ _ _ _ _ _
or" MRS___

Attributes: None
Subsumed Parts: 3

BBDA)
Name: Airfield End Tab
Link: 'iirfieid-End-Tab

Attributes:
1) Height = 100 pixels
2) Width = 80 pixels

Subsumed Parts: 5

BBDAA)
Name: Op Hours Box
Link: AirfiediLd-alTab,

Subsumed Parts: 0

BBDAB)
Name: Light Box
Link: Airfield-End-Tab
Subsumed Parts: 0

100

BBDAC)
Name: Quiet Box
Link: Airfield-End-Tab
Subsumed Parts: 0

BBDAD)
Name: MOG Box
Link: Airfield-End-Tab

Subsumed Parts: 0

BBDAE)
Name: BASH Box
Link: Airfield-End-Tab

Subsumed Parts: 0

BBDB)
Name: Central Airfield Timeline
Link: (cei tral-Airfield-Tiineline

CM w=

Attributes:
1) Height = 100 pixels
2) Width = 520 pixels
a) Event: Mouse over any subsumed part

Action: Display Time Parameters Tooltip
h) Event: AlertlViolation

Action: Change Color-coding

t) Event: Port Display Region
Action: CALL get projected arrival times for airfield

Subsumed Parts: Multiple

BBDBA)
Name: Individual Timelines
Link: Individual-Timeline

Attributes:
a) Event: Content Data Updates

Action: CALL respective data sources for subsumed parts

Subsumed Parts: 5

BBDBAA)
Name: OPS Timeline Bar
Link: Indiv idual-Tinicline

Subsumed Parts: 0

BBDBAB)
Name: Light Timeline Bar
Link: lndividual-Thnelinc

Subsumed Parts: 0

101

BBDBAC)
Name: Quiet Timeline Bar
Link: Individual-Timeline

Subsumed Parts: 0

BBDBAD)
Name: MOG Timeline Bar

Link: Individual-Thneline
Subsumed Parts: 0

BBDBAE)
Name: BASH Timeline Bar
Link: lndividual-Timeline
Subsumed Parts: 0

BBDC)
Name: Airfield End Tab
Link: BBDA

BBD)
Name: Ground Events Cluster
Link: Ground-Events-Cluster

SHADING ued
just as desrib",

to(Poart

MIN PRw Pew

ONVLOAD

BBE)
Name: Load/Cargo Cluster
Link: Load/Cargo-Cluster

PAX %AX

WDEVAC i~A

BC)
Name: Time Indicator
Link: ABB

REFERENCES

[1] I. Sommerville, Software Engineering. 7"h edition, Edinburgh: Addison-

Wesley, 2004.

[2] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling

Language, 3P edition, Edinburgh: Addison-Wesley, 2004.

[3] J. Wampler, "Work-Centered Software Engineering," HE-8 Solicitation, 2004.

[4] R. G. Eggleston, "Work-Centered Support System Design: Using Frames to

Reduce Work Complexity," Baltimore, 2002.

[5] C. Rourke, "Making UML the Lingua Franca of Usable System Design,"

Interfaces Magazine from the British HCI Group, 2002.

[6] R. G. Eggleston, M. J. Young, and R. D. Whitaker, "Work-Centered Support

System Technology: A New Interface Client Technology for the Battlespace

Infosphere," 2000.

[7] R. G. Eggleston, "Combining Representational and Automation Methods to

Aid Complex Work," In Symposium Proceedings on Analysis, Design, and

Evaluation of Human-Machine Systems HMS, International Federation of

Automatic Control, Atlanta, 2004.

[8] R. Scott, E. Roth, S. Deutsch, E. Malchiodi, T. Kazmierczak, R. G. Eggleston,

S. Kuper, and R. D. Whitaker, "Work-Centered Support Systems: A Human-

Centered Approach to Intelligent System Design," IEEE Intelligent Systems,

2003.

102

[9] R. G. Eggleston, "Work-Centered Design: A Cognitive Engineering Approach

to Systems Design," In Human Factors and Ergonomics Society 47th Annual

Meeting Denver, 2003.

[10] S. Lauesen, Software Requirements Styles and Techniques. Edinburgh:

Addison-Wesley, 2002.

[11] J. Wampler, R. D. Whitaker, E. Roth, R. Scott, M. Stilson, and G. Thomas-

Meyers, "Cognitive Work Aids for C2 Planning: Actionable Information to

Support Operational Decision Making," In 2005 International Command and

Control Research and Technology Symposium (ICCRTS). 2005.

[12] R. D. Whitaker, "Timeline Tool Design Concept Presentation," WIDE Project

Materials, 2005.

[13] L. Burman, A. Navaro, and C. White, Mastering XML Alameda, CA: Sybex,

2000.

[14] M. Abrams and J. Helms, User Interface Markup Language Draft

Specification, Version 3.1, 2004, Available at: http://www.oasis-

open.org/committees/download.php/5937/uiml-core-3. l-draft-01-

20040311 .pdf.

103

